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1

Introduction

Stochastic modeling of biological systems holds significant importance in
the natural sciences, as highlighted in [8]. The interest in mathematical
modeling of biological systems has significantly increased over the past
century. A large number of researchers have endeavored to comprehend
the operation of biological systems through mathematical techniques.
The basic approach is to treat a biological phenomenon as a physical state
wherein there is an interaction between energy and matter. However, this
type of physical state is highly organized, intricate, and complex, akin to
a machine where each part is more intricate. Due to this complexity, it is
preferable to analyze biological systems via probabilistic models. One of
the best tools for modeling biological systems is the branching processes.

1.1 Branching processes

The theory of branching processes is an area of mathematics that de-
scribes situations in which an individual exists for a time and then may
be replaced by one, two, or more individuals of a similar or different
type, see in [14]. This field is thoroughly explored and dynamic, attract-
ing both theoretical inquiry and practical implementation.

Since Francis Galton’s examination of the decline of surnames within
the British peerage during the 19th century, the theory of branching
processes has significantly advanced and made noteworthy contributions
to the fields of biology and medicine. In recent times, branching pro-
cesses have proven to be effective tools for shedding light on various
challenges across molecular biology, cell biology, developmental biology,
immunology, evolution, ecology, medicine, and related domains. Branch-
ing processes have been instrumental for experimentalists and clinicians
in comprehending seemingly counterintuitive observations, devising novel
experiments and clinical protocols, and offering testable predictions that
have been validated in real-world scenarios. For mathematicians, the
task of grasping novel biological and clinical findings has served as a ca-
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talyst for pioneering advancements in the realm of branching processes,
spurring the development of fresh mathematical frameworks.

A central question in the theory of branching processes is the proba-
bility of extinction, wherein no individuals exist after some finite number
of generations. Wald’s equation allows us to demonstrate that if we begin
with a single individual in the initial generation, the excepted population
size in generation n is mn, where m represents the expected number of
offspring. If m < 1 (subcritical process), then the excepted number of
individuals diminishes swiftly towards zero, indicating extinction with a
probability one according to Markov’s inequality. Alternatively, if m > 1
(supercritical process), then the probability of extinction is less than 1
(though not necessarily zero). If m = 1 (critical process), then extinc-
tion transpires with a probability one, unless each individual produces
exactly one offspring. One of the most frequently used types of branching
processes is represented by Galton–Watson processes.

1.1.1 The Galton–Watson process

The Galton–Watson process stands as the earliest, most straightforward,
and widely recognized branching process [14]. It can be described as
follows.

A single individual exists for precisely one unit of time. Upon its
demise, it generates a stochastic number of offspring according to a pre-
determined probability distribution. Each of the offspring in the first
generation behaves autonomously, just as the initial individual did, ope-
rating independently of one another. It exists for a single unit of time
and generates a random number of offspring. Each of the offspring in
the second generation behaves similarly, and this pattern continues for
subsequent generations. Because all particles have identical lifespans of
one unit, the process can be mathematically represented using a discrete-
time index, which corresponds to the number of successive generations.
The particle counts Zn in the successive generations n ≥ 0 (where gen-
eration 0 consists of the single initial individual) constitute a sequence
of random variables possessing numerous intriguing properties, such as
the Markov property. The properties of the Galton–Watson process offer
insights into more intricate branching phenomena.

The simplicity of the Galton–Watson process renders it a suitable
and commonly utilized tool for the initial exploration of proliferation
processes in biology. It is applicable whenever the assumption of discrete,
non-overlapping generations holds true.
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1.2 Markov control process

In Chapter 3, and 4 we give a model that leads to a stochastic optimiza-
tion problem.

In an optimal control problem, we are presented with a dynamical
system whose behavior can be influenced or regulated by appropriately
selecting certain variables of the system, known as control, action, or
decision variables, see in [10]. The controls that can be applied at any
given time are selected based on ,,rules” known as control policies. In ad-
dition, we are provided with a function known as a performance criterion
(or performance index), defined over the set of control policies, which
evaluates the system’s response to the control policies being employed
in some manner. The optimal control problem then entails identifying
a control policy that optimizes (i.e. either minimizes or maximizes) the
performance criterion.

Optimal control problems are initially classified based on the math-
ematical model of the system under investigation as (i) deterministic
or stochastic, and (ii) continuous-time or discrete-time models. A sec-
ond classification is into finite or infinite horizon problems, depending
on whether the system is to be operated over a finite or an infinite time
interval, respectively. A third classification pertains to the form of the
performance criterion. Indeed, there are numerous other possible classi-
fications. For instance, one may distinguish problems with full or incom-
plete state information, with a finite, countable, or uncountable number
of states, with constraints or without them, adaptive or not, and so on.

Here, our focus lies on a class of discrete-time, stochastic control sys-
tems referred to as Markov control processes (MCPs). These systems
are encountered in various fields, including engineering, economics, pop-
ulation control, and the management of renewable and nonrenewable
resources.

A discrete-time Markov control model is represented by a five-tuple

(X,A, {A(x), x ∈ X}, Q, c), (1.1)

where X and A are given sets, referred to as the state space and the
control (or action) set, respectively. {A(x) : x ∈ X} is a family of
nonempty subsets A(x) of A, where A(x) represents the set of feasible
controls (or actions) in the state x ∈ X. Finally, Q represents a transition
law, and c denotes a cost-per-stage (or one-stage cost) function. (In some
problems, it may be more convenient to consider a reward function r
instead of the cost c.)

The control model (1.1) represents a controlled stochastic system ob-
served at times t = 0, 1, . . .. Denoting by xt and at the state of the
system and the control (or action) applied at time t, respectively, the
evolution of the system may be described as follows. If the system is in
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state xt = x ∈ X at time t, and the control at = a ∈ A(x) is applied,
then two events occur: (i) a cost c(x, a) is incurred, and (ii) the system
transitions to the next state xt+1, which is an X-valued random variable
with distribution Q(·|x, a), i.e.,

Q(B|x, a) := P(xt+1 ∈ B|xt = x, at = a), B ⊂ X. (1.2)

Once the transition to the new state has occurred, a new control is se-
lected, and the process is repeated. (i) and (ii) are the key characteristics
of an MCP; that is, at any given time, the cost (or reward) and the transi-
tion law depend solely on the current state of the system and the current
action.

For now, let us interpret a control policy as a sequence π = {at} of
control actions which are feasible in the sense that at ∈ A(xt) for all
t = 0, 1, . . ., and let Π be the set of all policies. A policy π and an
initial state x0 = x determine a ”Markov-like” stochastic process called a
Markov control process (MCP)-also known as a Markov decision process
(MDP).

In many applications, the evolution of an MCP is specified by a dis-
cretetime (or difference) equation of the form

xt+1 = F (xt, at, ξt), t = 0, 1, . . . ; x0 given, (1.3)

where {ξt} is a sequence of independent and identically distributed (iid)
random variables with values in some space S and common distribution
µ, and independent of the initial state x0. In this case, the transition law
Q in (1.2) is given by

Q(B|x, a) = µ({s ∈ S|F (x, a, s) ∈ B})

=

∫
S

IB[F (x, a, s)]µ(ds)

= EIB[F (x, a, , ξ)],

(1.4)

where IB(·) stands for the indicator function of the set B, and ξ stands
for a generic random variable with distribution µ. To specify an optimal
control problem, in addition to a dynamic system and a set of policies,
we require a performance criterion, also known as a performance index
or objective function. In our case, a typical performance criterion is the
expected total cost up to a certain time N , denoted as:

JN(π, x) := Eπ
x

[
N∑
t=0

c(xt, at)

]
, (1.5)

where Eπ
x stands for the expected value when using the policy π = {at},

given the initial state x0 = x. Then the optimal control problem is to
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minimize the function π → JN(π, x) over Π, for all x. A policy π∗ such
that

JN(π∗, x) = inf
Π
JN(π, x), for all x ∈ X (1.6)

is said to be an optimal policy, and the minimum cost (1.6), i.e.,

J∗N(x) := inf
Π
JN(π, x), x ∈ X,

is referred to as the control problem’s value function or optimal cost.
Finally, if the one-stage cost c(x, a) is replaced by a one-stage reward

(or revenue or income) function r(x, a), then the resulting optimal control
problem is to maximize the given performance criterion.

Example 1. Portfolio selection. This example concerns the problem
faced by a ”small investor” (i.e., an economic agent whose actions cannot
influence the market prices) who has to decide on the best consumption-
investment strategy, given that he/she wishes to allocate the total invest-
ment among various assets with different rates of return. We consider
two assets: one of them is a risk-free or safe asset (e.g., a bond) with
a fixed interest rate i, and the other one is a risky asset (stock) with
a stochastic rate of return ξt of investment at time t. A consumption-
investment policy is a sequence π = {(pt, ct), t = 0, 1, . . .} consisting of a
portfolio process {pt} and a consumption process {ct}. That is, at each
time t, pt (resp. 1 − pt) is the fraction of wealth invested in the stock
(resp. the safe asset), and ct is the amount of wealth consumed; they
must satisfy the constraints

0 ≤ pt ≤ 1, 0 ≤ ct ≤ xt, (1.7)

where xt denotes the investor’s wealth at time t. Thus, the state or
wealth process {xt} evolves according to the equation

xt+1 = [(1− pt)(1 + i) + ptξt](xt − ct), t = 0, 1, . . . , (1.8)

with a given initial wealth x0 = x > 0.
In this example, we may take the state space X = R+ := [0,∞)

and the control set A = [0, 1] × R+. From (1.7), the set of feasible
controls a = (p, c) is A(x) = [0, 1] × [0, x] whenever the state or wealth
is x. Assuming that {ξt} is a sequence of iid random variables with
distribution µ, the transition law Q is determined from (1.8), as in (1.3)-
(1.4). Finally, to complete the specification of a Markov control model in
the form (1.1) we introduce a one-stage reward function r(x, a) (instead
of a cost c). A typical choice of r in financial economics is a ”utility from
consumption” i.e., with a = (p, c) ∈ A(x),

r(x, a) := u(c),
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where u is a given ”utility” function. The corresponding optimal con-
trol problem is of course to maximize this criterion over the set of all
consumption-investment policies that satisfy (1.7).

1.3 Biological outlook

This thesis predominantly incorporates real measurement results for mod-
eling, with the tested organism being predominantly the bacterial species
Chlamydia trachomatis. In Figure 2.3 and 2.4, we can observe measure-
ment results obtained from the Department of Medical Microbiology and
Immunobiology, University of Szeged. Figure 3.1 shows temporal analy-
sis of chlamydial developmental forms using a three-dimensional electron
microscopy approach, [15].

Chlamydia trachomatis infections, which are sexually transmitted,
pose a significant global public health challenge. These infections affect
millions of individuals worldwide, including men, women, and children,
often leading to severe medical complications. Chlamydiae are obligate
intracellular bacteria that primarily infect epithelial cells of the conjunc-
tiva, respiratory tract and urogenital tract.

Chlamydiae have an unique developmental cycle, with two phenotypic
bacterial forms, the elementary body (EB) and the reticulate body (RB),
see in Figure 1.1. The EB is the infectious form, the RB multiplies in
the host cell by binary fission in the inclusion, which is a specific area of
the infected host cell.

Figure 1.1: Life cycle of Chlamydia [2].
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Within the initial 2 hours following internalization into cells, EBs
merge to establish a nascent inclusion. Between 2 and 6 hours post-
internalization, EBs initiate differentiation into RBs. By 12 hours post-
infection (hpi), RBs are observed dividing through binary fission, and
their numbers peak by 18 to 24 hpi. Subsequently, an increasing number
of RBs revert back to EBs around 24 hpi and continue this differentiation
process until lysis or release occurs between 48 and 72 hpi, depending on
the species of Chlamydia involved. The EBs are ready to infect new host
cells.

This unique life-cycle triggered a lot of mathematical work to model
the growth of the population. Wilson [24] worked out a deterministic
model taking into account the infected and uninfected host cells and the
extracellular Chlamydia concentration. Wan and Enciso [23] formulated
a deterministic model for the quantities of RB’s and EB’s, and solved an
optimal control problem to maximize the quantity of EB’swhen the host
cell dies. The same problem in a stochastic framework was investigated
by Enciso et al. [5] and Lee et al. [15].

There is a third form of the bacterium, the aberrant body or per-
sistent body. This form of the bacterium is induced by various adverse
environmental stimuli, such as the lack of nutrients and the presence of
antibiotics, see Panzetta et al. [18]. The persistent body is not capable to
multiply. After elimination of the stress stimuli, the persistent body may
reenter the normal developmental cycle, differentiates to RB, multiplies
and redifferentiates to EB. If there is an excess of antibiotics reaching the
so-called bactericide concentration, the bacterium is killed, and no mul-
tiplication can be observed. A lower antibiotic concentration does not
kill all of the bacterium, but leads to the formation of non-multiplying
aberrant bodies. Further lowering the antibiotic concentration more RB
can be observed, while the formation of aberrant body decreases. At very
low antibiotic concentration, the antibiotic has no effect on the bacterial
growth and all the bacteria enter the normal developmental cycle.

This thesis is structured as follows. In Chapter 2, we provide a Gal-
ton–Watson model for the growth of a bacterial population in the pres-
ence of antibiotics. Chapter 2 is based on [3]. We assume that bacterial
cells either die or duplicate, and the corresponding probabilities depend
on the concentration of the antibiotic. Assuming that the mean offspring
number is given by m(c) = 2/(1 + αcβ) for some α, β, where c stands
for the antibiotic concentration we obtain weakly consistent, asymptot-
ically normal estimator both for (α, β), and for the minimal inhibitory
concentration (MIC), a relevant parameter in pharmacology. For the
measurements of Chlamydia growth quantitative polymerase chain reac-
tion (qPCR) technique was used. The 2-parameter model fits remarkably
well to the biological data.

Section 2.6 is a part of Chapter 2, based on [12]. The model as-
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sumption is entirely similar, as in Chapter 2; however, the measurement
method differs. We assume that bacterial cells either die or duplicate,
with probabilities p0(c), and p2(c), where p2(c) = 1/(1 + αcβ) for some
positive real numbers α, β. Using measurements based on colony count-
ing method we obtain weakly consistent, asymptotically normal estima-
tor for the parameters.

In Chapter 3, we explore the unique life cycle of Chlamydia. Chap-
ter 3 is based on [13]. We model the population growth by a 2-type
discrete-time branching process, where the probability of duplication de-
pends on the state. Maximizing the EB production leads to a stochastic
optimization problem. Simulation study shows that our novel model is
able to reproduce the main features of the development of the popula-
tion, something deterministic models had not been able to achieve until
now.

In Chapter 4, we establish a connection with our previous findings.
Specifically, at a given antibiotic concentration, we determine the optimal
transition of Chlamydia from the RB form to the EB form. First and
foremost, we assume that the antibiotic solely affects the RB body, but
not the EB body. This assumption is biologically plausible since EB
bodies have the capability to form inclusions, aiding their survival under
adverse conditions. In this scenario, we can numerically determine the
optimal strategy, see in Section 4.1. In the alternate case, we assume
that the antibiotic affects both the RB and EB bodies, see in Section
4.2. It is important to emphasize that, as far as our knowledge extends,
there is no real-world measurement data available for these models.



2

Stochastic Modeling of In Vitro
Bactericidal Potency

Since the discovery of penicillin, antibiotics have been used increasingly
worldwide to treat bacterial infections. However, due to the easy access
to, and the general misuse of antibiotics some bacteria became resistant
to them. These superbugs, the extensively drug resistant bacterias, are
one of the main threats of the future. Resistance appears in bacterial
population naturally due to random mutation. By killing the vulnerable
bacteria the use of antibiotics increase the portion of resistant bacteria
in the population. Therefore, for the safe and proper use of antibiotics
the determination of bactericidal potency is of the utmost importance.

In this Chapter the bacterial population is modeled by a special two-
type Galton–Watson branching process, where the types represent the
alive and dead bacterias, respectively. We assume that the offspring dis-
tribution, in particular the offspring mean m(c) depends on the antibiotic
concentration c > 0 as

m(c) = mα,β(c) =
2

1 + αcβ
, (2.1)

where α > 0, β > 0 are unknown parameters. This flexible 2-parameter
model captures the basic features of antibiotic dependence: (1) m(0) = 2,
that is each bacterial cell duplicates in an antibiotic-free environment; (2)
m is monotone decreasing and continuous, that is increasing the antibi-
otic concentration decreases the chance to duplicate; (3) limc→∞m(c) = 0
that is sufficiently large antibiotic concentration kills the bacteria. Un-
der this model the minimal inhibitory concentration (MIC), the smallest
antibiotic concentration preventing bacterial growth, is the smallest c
for which m(c) = 1, that is α−1/β. MIC is a very important parame-
ter in pharmacology. Its estimation is rather troublesome, since due to
the usual two-fold dilution technique one can observe only the bacterial
growth under antibiotic concentration c0, 2c0, . . . , 2

kc0. Therefore one
can claim only that the MIC belongs to some interval [c, 2c], or give an

9
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upper bound for it. Based on measurements at different concentrations
we obtain weakly consistent asymptotically normal estimator both for
(α, β), and for the MIC. Although the mathematical model has only 2
parameters, it fits remarkable well to real data.

We assume that the bacterial population is homogeneous, all the cells
behave similarly. In particular, there is no resistant type. As mutation is
rare under normal conditions and in short time, this is a natural assump-
tion for our data set. Long-term evolution of bacterial populations with
both resistant and susceptible types was investigated in several papers
using deterministic models, see Svara and Rankin [21] and Paterson et
al. [20], and the references therein. Closest to our model is the deter-
ministic model given by Liu et al. [16]. In Liu et al. [16] a deterministic
expression for the number of colony forming units is obtained in terms
of the antibiotic concentration.

Branching processes are classical tools to model cell proliferation, see
the monographs by Haccou et al. [9], Kimmel and Axelrod [14]. However,
to the best of our knowledge for estimation of bactericidal potency of
antibiotics only deterministic models are used.

In the experiments growth of Chlamydia trachomatis bacterial pop-
ulation was analyzed by quantitative PCR (qPCR) method with 12 dif-
ferent antibiotic concentrations and 2 different antibiotics.

Azithromycin and doxycycline are the most commonly used antibi-
otics in Chlamydia infections (Miller [17]), but Chlamydiae are also sen-
sitive to quinolone type antibiotics (Vu et al. [22]). Now Chlamydia tra-
chomatis infected cells were treated with azithromycin and the quinolone
ciprofloxacin. The dose response curves, the concentration dependent im-
pacts of these antibiotics on chlamydial growth were measured 48 hours
post infection. A major challenge is the accurate measurement of chlamy-
dial growth. The golden standard is the immunofluorescent labeling and
manual counting of the chlamydial inclusions. This very tedious but pre-
cise method was used recently in Lee et al. [15]. Instead of counting
the bacterial cells, the quantity of bacterial genomes (which is a constant
times the number of bacteria) can also be measured. Chlamydial genome
concentration in the infected host cells can be measured by qPCR tech-
nique. This method is accurate and theoretically measures the genome
of all individual bacteria. Eszik et al. [6] developed a version of the
qPCR, the so-called direct qPCR method for chlamydial growth moni-
toring. Direct qPCR is capable to perform qPCR measurements without
the labor-intensive deoxyribonucleic acid (DNA) purification.

The qPCR method gives a so-called cycle threshold (Ct) value to
each bacterial sample. If the effectivity of the qPCR is 100%, then in
the exponential phase of the PCR, when there are enough reagents the
amount of PCR product doubles in each cycle. In a qPCR experiment
the amount of the PCR product is monitored continuously after each
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qPCR cycle. The less is the original amount of qPCR template (here
Chlamydia trachomatis DNA) the higher number of cycles are needed
to reach a certain level of PCR product (in fact fluorescence intensity).
Fixing a threshold level the needed cycle number is the Ct value, see
e.g.Yuan et al. [25]. As an example, if sample A has a Ct value of 22
and sample B has a Ct value of 24, then sample A contains 4 times
as much chlamydial DNA than sample B. Therefore, the theoretical Ct
value equals a− log2 Z

(i)
n;c,x0 , where a ∈ R is an unknown constant, which

depends on the choice of the threshold level, and can be estimated as
described in (2.30) below, and Z

(i)
n;c,x0 stands for the total number of

dead and alive bacterial cells at antibiotic concentration c > 0, after
n generations starting with x0 bacterias, in experiment i. Adding a
measurement error, the measurements have the form

Ci(c, x0) = a− log2 Z
(i)
n;c,x0

+ εi;c, i = 1, . . . , N, (2.2)

where measurement error εi;c is assumed to have mean zero, and variance
σ2
ε . This simple linear model is suggested by Yuan et al. [25]. Due

to the measurement method lower the Ct value means higher genome
concentration. The dose response curves measured by a direct qPCR
method were used in this paper, see Figures 2.3 and 2.4.

The rest of this Chapter is organized as follows. The model and
some basic properties are given in Section 2.1. The estimator of m(c)
for c fixed is provided in Section 2.2, while in Section 2.3 we consider
different antibiotic concentrations together. Section 2.4 contains a small
simulation study, and real data is analyzed in Section 2.5.

2.1 The theoretical model

We consider a simple Galton–Watson branching process where the off-
spring distribution depends on the antibiotic concentration c ≥ 0. Each
bacteria either dies (leaves no offspring), survives (leaves 1 offspring),
or divides (leaves 2 offsprings) with respective probabilities p0 = p0(c),
p1 = p1(c), and p2 = p2(c). Let f(s) = fc(s) denote the offspring gen-
erating function and m = m(c) the offspring mean if the antibiotic con-
centration is c, i.e.

f(s) = fc(s) = Esξc =
2∑
i=0

pi(c)s
i, s ∈ [0, 1],

m = m(c) = f ′c(1) = Eξc,

(2.3)

where ξc is the number of offsprings. The process starts with X0 = x0

initial individuals, and

Xn+1;c =

Xn;c∑
i=1

ξ
(n)
i;c , (2.4)
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where {ξc, ξ(n)
i;c : i ≥ 1, n ≥ 1} are iid random variables with generating

function fc. Note that the offspring distribution does depend on the
antibiotic concentration c, but here and in the next section we suppress
this dependence from the notation.

Using the qPCR method the observed quantity is the genom of all
individual bacteria, which is a constant times the total number of bacte-
ria, that is live and dead cells together. Therefore, we have to keep track
of the dead bacterias too. In order to do this we consider a two-type
Galton–Watson branching process Xn = (Xn, Yn), n ≥ 0, where Xn, Yn
stands for the number of alive, dead bacterias respectively, in generation
n. Then the total number of bacteria at generation n is Zn = Xn + Yn.
We also write Zn,x0 to emphasize that X0 = x0. The process evolves as

Xn+1 =
Xn∑
i=1

ξ
(n)
i

Yn+1 = Yn +
Xn∑
i=1

η
(n)
i , n ≥ 0,

(2.5)

(X0, Y0) = (x0, 0), where (ξ, η), (ξ
(n)
i , η

(n)
i ), n = 1, 2, . . ., i = 1, 2, . . . are

iid random vectors such that P((ξ, η) = (0, 1)) = p0, P((ξ, η) = (1, 0)) =
p1, P((ξ, η) = (2, 0)) = p2. The offspring mean matrix M has the form

M =

(
Eξ Eη
0 1

)
=

(
m p0

0 1

)
.

In this M matrix, the first row and the first column represent the living
individuals, while the second row and the second column represent the
dead individuals. Next we determine the mean vector of Xn.

Lemma 1. If x0 = 1 then for the mean we have EXn = mn, and EYn =
p0(1 +m+ . . .+mn−1), thus

µn := EZn,1 =

{
mn
(
1 + p0

m−1

)
− p0

m−1
, m 6= 1,

1 + p0n, m = 1.

Furthermore

VarXn =

{
σ2mn−1(mn−1)

m−1
, m 6= 1,

nσ2, m = 1,
(2.6)

where σ2 = Varξ. For m 6= 1

Var(Yn) = m2n p2
0σ

2

m(m− 1)3
− nmn 2p2

0ν

m(m− 1)2

+mn

(
p0(p0ν +m(m− 1))

m(m− 1)2
+

2p2
0

(m− 1)2

)
− p0(p0ν + (m− 1)2)

(m− 1)3
− p2

0

(m− 1)2
,
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with ν = σ2 +m(m− 1), and

Cov(Xn, Yn) = m2n p0σ
2

m(m− 1)2
−mn p0

m(m− 1)

(
nν +

σ2

m− 1

)
,

while for m = 1

Var(Yn) = p2
0σ

2 (n− 1)n(2n− 1)

6
+ p0n− p2

0n
2,

and

Cov(Xn, Yn) = p0σ
2n(n− 1)

2
− p0n.

Proof of Lemma 1.

E [Xn+1|Xn] =

(
mXn

p0Xn + Yn

)
= XnM,

thus
EXn = X0M

n.

We have, by induction on n that

Mn =

(
mn p0(1 + . . .+mn−1)
0 1

)
,

thus

EZn = mn + p0(1 +m+ . . .+mn−1)

=

{
mn
(
1 + p0

m−1

)
− p0

m−1
, if m 6= 1,

1 + np0, if m = 1,

(2.7)

as claimed.
To ease notation put

p0 ◦Xn =
Xn∑
i=1

η
(n)
i .

Then
Yn = Yn−1 + p0 ◦Xn−1

thus
Y 2
n = Y 2

n−1 + 2Yn−1(p0 ◦Xn−1) + (p0 ◦Xn−1)2.

Conditioned on Xn−1 the variable p0 ◦ Xn−1 has binomial distribution,
therefore

E(p0 ◦Xn−1)2 = E
[
Xn−1p0(1− p0) +X2

n−1p
2
0

]
.
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Since (Xn) is a single type GW process, (2.6) holds. Furthermore,

E[Yn−1 (p0 ◦Xn−1)] = p0EXn−1Yn−1.

Summarizing

EY 2
n = EY 2

n−1 + 2p0EXn−1Yn−1 + p0(1− p0)EXn−1 + p2
0EX

2
n−1. (2.8)

Next we obtain a recursion of EXnYn. Using the definition

EXnYn = E

Xn−1∑
i=1

ξ
(n−1)
i

(
Yn−1 +

Xn−1∑
i=1

η
(n−1)
i

)

= mEXn−1Yn−1 + E

Xn−1∑
i=1

ξ
(n−1)
i

Xn−1∑
i=1

η
(n−1)
i .

For fixed k, using that (ξi, ηi) are iid

E
k∑
i=1

ξi

k∑
i=1

ηi =
k∑
i=1

Eη1ξ1 + k(k − 1)EξEη = k(k − 1)mp0.

Substituting back

EXnYn = mEXn−1Yn−1 +mp0EXn−1(Xn−1 − 1).

Using induction and (2.6) we obtain the closed formula

EXnYn =
n−1∑
i=1

p0m
iEXn−i(Xn−i − 1)

=

{
mn p0ν

(m−1)m

(
mn

m−1
−
(
n+ 1

m−1

))
, m 6= 1,

p0σ
2 n(n−1)

2
, m = 1,

where, to ease notation we put ν = σ2 +m(m− 1). From (2.8)

EY 2
n = 2p0

n−1∑
i=0

EXiYi + p0(1− p0)
n−1∑
i=0

EXi + p2
0

n−1∑
i=0

EX2
i , (2.9)

where we have a closed formula for all the ingredients.
First assume that m 6= 1. For the last two terms simply

n−1∑
i=0

EXi =
mn − 1

m− 1
,

n−1∑
i=0

EX2
i =

ν

m(m− 1)

m2n − 1

m2 − 1
− σ2

m(m− 1)

mn − 1

m− 1
.
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For the first term, using that

n−1∑
i=1

imi =
1

(m− 1)2

[
nmn(m− 1)−mn+1 +m

]
,

we obtain

n−1∑
i=0

EXiYi =
p0ν

m(m− 1)2

m2n − 1

m2 − 1
− p0ν

m(m− 1)2

mn − 1

m− 1

− p0ν

m(m− 1)

1

(m− 1)2

[
nmn(m− 1)−mn+1 +m

]
= m2n p0ν

m(m− 1)3(m+ 1)
− (n− 1)mn p0ν

m(m− 1)2
− p0νm

(m− 1)3(m+ 1)
.

Substituting back into (2.9)

EY 2
n = m2n p2

0ν

m(m− 1)3
− nmn 2p2

0ν

m(m− 1)2
+mnp0(p0ν +m(m− 1))

m(m− 1)2

− p0(p0ν + (m− 1)2)

(m− 1)3
.

While for m = 1 substituting back into (2.9) after some calculation we
obtain

EY 2
n = p2

0σ
2 (n− 1)n(2n− 1)

6
+ p0n.

Substituting into the definition of variance and covariance, the result
follows.

The strong law of large numbers and the central limit theorem imply
that for each fixed n as x0 →∞

Zn,x0
x0

−→ µn a.s. (2.10)

and
Zn,x0 − x0µn√

x0

D−→ N (0, σ2
n), (2.11)

where
D−→ stands for convergence in distribution, and

σ2
n = Var(Zn) = Var(Xn) + Var(Yn) + 2Cov(Xn, Yn).

It is clear that the geometric growth rate of EZn is the offspring mean
m, while the precise distribution determines only the constant factor.
Simple analysis shows that if m = p1 + 2p2 > 1 then

mn ≤ µn =
p2m

n − p0

m− 1
≤ m(mn − 1)

2(m− 1)
+ 1, (2.12)



2.2. Estimation of the offspring mean 16

if m = 1 then

1 ≤ µn = 1 + p0n ≤ 1 +
n

2
, (2.13)

while for m < 1

1 ≤ µn =
p0 − p2m

n

1−m
≤ m(1−mn)

2(1−m)
+ 1. (2.14)

The upper bound is attained at (p0, p1, p2) = (1 − m/2, 0,m/2), while
the lower bound is attained at (p0, p1, p2) = (0, 2−m,m− 1) for m ≥ 1,
and at (p0, p1, p2) = (1−m,m, 0) for m ≤ 1.

The process (Xn) is a single type Galton–Watson process with off-
spring mean m = p1 + 2p2. If m ≤ 1 then the process dies out almost
surely, that is Xn = 0 for some n (if m = 1 we exclude the degenerate
case p1 = 1) while if the process is supercritical, i.e. m > 1 then the prob-
ability of extinction is the smaller root of f(q) = q, which is q = p0/p2;
see e.g. Theorem 5.2 in Haccou et al. [9]. By the martingale convergence
theorem

Xn

mn
→ W a.s., (2.15)

where W is a nonnegative random variable. For m ≤ 1 clearly W ≡ 0,
while if m > 1 then P(W = 0) = q, and the distribution of W is
absolutely continuous on (0,∞).

The process Xn = (Xn, Yn) is decomposable, which, in the 2-type
case only means that type-2 individual cannot have type-1 offspring.
Limit theorems for supercritical decomposable processes were obtained
by Kesten and Stigum [11]. The eigenvalues of M are m and 1, therefore
the process is supercritical if and only if m > 1. The left eigenvector
corresponding to m is

u =

(
u1,

p0

m− 1
u1

)
.

Applying Theorem 2.1 by Kesten and Stigum [11] we obtain for m > 1
that

lim
n→∞

1

mn
(Xn, Yn) = W

(
1,

p0

m− 1

)
,

where W is the nonnegative random variable from (2.15).

2.2 Estimation of the offspring mean

Recall that the measurements are given in the form (2.2), where Z
(i)
n;c,x0

stands for the total number of dead and alive bacteria at generation n
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starting with x0 bacteria under antibiotic concentration c at experiment
i, i = 1, . . . , N . We assume that the sequence {εi;c : i ≥ 1, c ≥ 0} are
iid, independent of the process Xn, and ε is Gaussian with mean 0 and
variance σ2

ε .
By (2.11), an application of the delta method (see e.g. Agresti [1]

Section 14.1) implies as x0 →∞, for any i = 1, 2, . . . , N

√
x0 log2

(
1 +

Z
(i)
n;c,x0 − x0µn
x0µn

)
D−→ N

(
0, σ2

n(µn log 2)−2
)
, (2.16)

in particular, as x0 →∞

log2 Z
(i)
n;c,x0

− log2(x0µn)
P−→ 0, (2.17)

where
P−→ stands for convergence in probability. In the following, we

frequently use the delta method. Put

log2 µ̂n = a− log2 x0 −
∑N

i=1 Ci(c, x0)

N
.

In the next results both x0 and N tend to infinity. Taking iterated
limits are always understood as first x0 → ∞ and then N → ∞. The
next statement is a simple consequence of (2.16), (2.17), the law of large
numbers, and the central limit theorem.

Proposition 1. As first x0 →∞ and then N →∞

log2 µ̂n
P−→ log2 µn,

which implies that µ̂n is weakly consistent estimatior of µn. Furthermore,
as first x0 →∞ and then N →∞

1

σε

√
N [log2 µ̂n − log2 µn]

D−→ N (0, 1),

which implies that

1

σεµn log 2

√
N (µ̂n − µn)

D−→ N (0, 1),

Thus we can estimate µn. The problem is that µn does not determine
uniquely m, only gives a possible range for it. This range can be deduced
from the sharp bounds in (2.12), (2.13), (2.14). In Figure 2.1 we see
the corresponding upper and lower bounds for log2 µn for n = 10. If
log2 µ10 = 8 we can deduce that m has to be in the range (1.709, 1.741),
while if log2 µ10 = 1, than m ∈ (0.671, 1.072). The larger values of log2 µn
imply more precise bouns for m. Furthermore, larger n also implies more
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Figure 2.1: Upper and lower bound for log2 µn for n = 10.

precise bounds. However, for m ≤ 1 one cannot determine the value m
from Zi. This is reasonable, since for both p0 = 1 and p1 = 1 we have
µn = 1, whereas m = 0 in the former and m = 1 in the latter case.

To overcome this difficulty, we assume that p1 ≡ 0. This is clearly
reasonable for bactericide antibiotics, which either kill the bacteria, or let
it duplicate. While, if a bacteriostatic antibiotic blocks the duplication
of a single bacteria then it keeps blocking in the later generations as well.
Therefore, we can equally count a ‘blocked’ bacteria as a dead one.

Assume now that p1 ≡ 0. Then µn is Lemma 1 simplifies to

µn(m) =
m

2

(
mn−1 + . . .+ 1

)
+ 1 =

{
m(mn−1)
2(m−1)

+ 1, m 6= 1,
n
2

+ 1, m = 1.
(2.18)

Then µn is a strictly increasing convex function, µn(0) = 1, µn(2) = 2n.
Its inverse function ψn : [1, 2n] → [0, 2] is continuous strictly increasing.
Define the estimate

m̂ = ψn(µ̂n). (2.19)

From Proposition 1 it follows that m̂ is a weakly consistent estimator of
m, and by the delta method

√
N

ψ′n(µn(m))σεµn log 2
(ψn(µ̂n)− ψn(µn(m)))

=

√
N

ψ′n(µn(m))σεµn log 2
(m̂−m)

D−→ N (0, 1).

Noting that ψ′n(µn(m)) = 1/µ′n(m) we obtain the following.
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Proposition 2. Assume that p1 = 0. As first x0 →∞ and then N →∞,
the estimate m̂ is a weakly consistent estimator of m, and

µ′n(m)

σεµn(m) log 2

√
N(m̂−m)

D−→ N (0, 1).

2.3 The dependence of m on the antibiotic

concentration

Assuming p1 ≡ 0 we can estimate the mean for c > 0 fixed as described
in Proposition 2. Next we combine our estimator for different concentra-
tions.

We assume that the offspring mean as a function of c satisfies (2.1) for
some unknown parameters α > 0, β > 0. This is a quite flexible model,
and we show that empirical data fits very well to this model. Rewriting
(2.1)

logα + β log c = log

(
2

m(c)
− 1

)
. (2.20)

Assume that we have measurements for K ≥ 2 different concentrations
c1 < c2 < . . . < cK , and we obtain the estimator for the offspring mean
m̂(ci), i = 1, 2, . . . , K. Standard least square theory implies that the
expression

K∑
i=1

(
log

(
2

m̂(ci)− 1

)
− β log ci − logα

)2

attains it minimum at (α, β) = (α̂, β̂), with

β̂ =
K
∑K

i=1 hi`i −
∑K

i=1 hiL1

KL2 − L2
1

α̂ = exp

{∑K
i=1 hi − β̂L1

K

}
,

(2.21)

where to ease notation we write

hi = log

(
2

m̂(ci)
− 1

)
, `i = log ci, (2.22)

and

L1 =
K∑
i=1

`i, L2 =
K∑
i=1

`2
i . (2.23)
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Note that by the Cauchy–Schwarz inequality the denominator of β̂ is
strictly positive for K ≥ 2.

The minimal inhibitory concentration (MIC) is the smallest antibiotic
concentration that stops bacteria growth. In mathematical terms

ϑ := MIC = min{c : m(c) ≤ 1},

which, under the assumption (2.1)

ϑ = MIC = α−1/β.

Define the estimator

ϑ̂ = α̂−1/β̂. (2.24)

In the following statement we summarize the main properties of these
estimators. Introduce the notation

ki =
2

m(ci)(2−m(ci))

σεµn(m(ci)) log 2

µ′n(m(ci))
, i = 1, 2, . . . , K. (2.25)

Proposition 3. Assume that first x0 →∞ and then N →∞. Then the
estimates α̂, β̂, and ϑ̂ are weakly consistent estimators of the correspond-
ing quantities. Furthermore, as x0 →∞ and then N →∞

√
N(α̂− α, β̂ − β)

D−→ (U, V ),

where (U, V ) is a two-dimensional normal random vector with mean 0
and covariance matrix (

σ2
α σαβ

σαβ σ2
β

)
,

where

σ2
α =

α2

(KL2 − L2
1)

2

K∑
i=1

k2
i (L2 − L1`i)

2

σαβ =
α

(KL2 − L2
1)

2

K∑
i=1

k2
i (K`i − L1)(L2 − L1`i)

σ2
β =

1

(KL2 − L2
1)

2

K∑
i=1

k2
i (K`i − L1)2 ,

and

√
N(ϑ̂− ϑ)

D−→ N (0, σ2
ϑ),
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with

σ2
ϑ =

ϑ2 (logα)2

β2(KL2 − L2
1)2

K∑
i=1

k2
i

(
L2 − L1`i

logα
− K`i − L1

β

)2

.

Proof of Proposition 3. In what follows all the iterated limits aremeant
as first x0 →∞ and then then N →∞. By Proposition 2 and the delta
method

√
Nm(ci)(2−m(ci))µ

′
n(m(ci))

2σεµn(m(ci)) log 2

(
hi − log

(
2

m(ci)
− 1

))
=

√
N

ki

(
hi − log

(
2

m(ci)
− 1

))
D−→ N (0, 1),

for i = 1, 2, . . . , K. Recall the notation in 2.23. Then using the indepen-
dence of h′is

√
N

K∑
i=1

(
hi − log

(
2

m(ci)
− 1

))
(K`i − L1)

D−→ N (0, s2
n),

with

s2
n =

K∑
i=1

k2
i (K`i − L1).

Substituting back into 2.21

√
N(β̂ − β)

D−→ N (0, σ2
β). (2.26)

Similarly √
N(α̂− α)

D−→ N (0, z2
n), (2.27)

with

z2
n =

K∑
i=1

k2
i (L2 − L1`i)

2

(KL2 − L2
1)2

,

which implies √
N(α̂− α)

D−→ N (0, σ2
α).

The statement for the covariance follows the same way. From (2.26) and
(2.27) we obtain √

N(ϑ̂− ϑ)
D−→ N (0, σ2

ϑ),

as claimed.
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Figure 2.2: m(c) in a logarithmic scale (solid (α, β) = (10, 1), dashed
(α, β) = (100, 2)).

2.4 Simulation study

Regardless of the fixed values c = (c1, . . . , cK) the estimator (α̂, β̂) is
weakly consistent and asymptotically normal as x0 → ∞ and N → ∞.
However, the asymptotic variances in Proposition 3 do depend on the
specific choice of K ≥ 2 and the values c1 < . . . < cK . If the antibi-
otic concentration is too low we essentially see a freely growing bacterial
population, while for too large concentration the antibiotic already kills
all the bacteria, and we only see the initial population. Therefore, intu-
itively it is clear that we should choose values for the concentration ci
such that m(ci) is not close to 0, nor to 2. Otherwise we cannot tell at
which concentration the antibiotic starts to work.

Consider the following example. Assume that

α = 10, β = 1, n = 10, x0 = 104, σε = 0.2. (2.28)

It turns out that this is a reasonable choice, see the azithromycin data
in the next section. The mean offspring function m(c) is given on Figure
2.2.

Choose K = 3 different concentrations such that c1 = (2−6, 2−4, 2−2).
Then for the asymptotic covariances we obtain

σ2
α = 8.63, σα,β = 0.25, σ2

β = 0.00767, σ2
ϑ = 0.00012. (2.29)
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concentrations σ2
α σα,β σ2

β σ2
ϑ

c1 = (2−6, 2−4, 2−2) 8.63 0.25 0.00767 1.2 · 10−4

c2 = (2−2, 2−1, 1) 112 9.41 0.833 0.012
c3 = (2−9, 2−8, 2−7) 967 18.7 0.364 0.0298
c4 = (2−8, 2−7, 2−1, 1) 58 1.17 0.0257 0.00179
c5 = (2−9, 2−8, . . . , 1) 23 0.568 0.0157 5.1 · 10−4

Table 2.1: Asymptotic variances for different choices of c for (α, β) =
(10, 1).

However, as we see in Table 2.1 wrong choice of the concentrations might
results much larger variances. For c2 we only observe the process at large
concentrations, killing all the bacteria, while in case c3 the concentration
is small, the antibiotic does not have any effect. The combination of large
and small values as in c4 does not help either. Less obvious is the fact
that choosing too many points is contraproductive too. This is the case
for c5.

Choosing the values as in (2.28), K = 3 and c1 = (2−6, 2−4, 2−2)
we simulated the process as follows. For a given concentration ck, k =
1, . . . , K, we calculate m(ck) from (2.1), and choose the offspring distri-
bution

p0;k = 1− m(ck)

2
, p1;k = 0, p2;k =

m(ck)

2
.

With this offspring distribution we simulate n = 10 generations of the
two-type Galton–Watson process (Xn, Yn) described in Section 2.1. There-
fore we obtain Z10;ck,x0 . Independently, we repeat the simulation N times
for each concentration ck. Independent of the Z’s take an iid sequence
of Gaussian random variables {εi;ck : i = 1, . . . , N ; k = 1, . . . , K} with
mean zero and variance σ2

ε . Take a = 0 in (2.2). The resulting sequence
{Ci(ck, x0) : i = 1, . . . , N ; k = 1, . . . , K} is one simulated measurement.

From each measurement we calculate the estimation (α̂, β̂) as described
in (2.21). We simulated the measurement this way 1000 times. The re-

sulting means and empirical variances of
√
N(α̂−α, β̂−β) and

√
N(ϑ̂−ϑ)

are given in Table 2.2. We see that the empirical values are very close
to the theoretical ones in (2.29) even for N = 3, 10. It is somewhat
surprising that the estimates work even for N = 3, which is the sug-
gested number of measurements at each concentration in microbiology
(see e.g. [25, 6]).

Next we investigate our estimator with a steeper killing curve. Let
α = 100 and β = 2, and the other values as in (2.28). This is also a possi-
ble choice, see the estimates for the ciprofloxacin data in the next section.
In Figure 2.2 wee see the mean offspring function m(c) for (α, β) = (10, 1)
and for (α, β) = (100, 2). Note that the MIC value is 0.1 in both cases.
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N α β ϑ σ̂2
α σ̂α,β σ̂2

β σ̂2
ϑ

3 10.359 1.004 0.0998 12.95 0.325 0.00891 0.000121
10 10.106 1.002 0.1 9.27 0.262 0.00789 0.000116
50 10.03 1.0005 0.1 9.3 0.265 0.008 0.000124

100 9.999 0.9999 0.1 8.83 0.258 0.008 0.000117
∞ 10 1 0.1 8.63 0.25 0.00767 0.00012

Table 2.2: Empirical mean and variances for (α, β) = (10, 1).

concentrations σ2
α σα,β σ2

β σ2
ϑ

c1 = (2−6, 2−4, 2−2) 11298 35.6 0.0124 3.64 · 10−4

c6 = (2−5, 2−4, 2−3) 1431 5.49 0.0216 1.26 · 10−5

c7 = (2−7, 2−6, . . . , 2−1) 42490 129.3 0.429 0.00142

Table 2.3: Asymptotics variances for different choices of c for (α, β) =
(100, 2).

Therefore, we can compare two rather different and practically relevant
scenarios. In the latter case the curve is much steeper, therefore there
are less relevant concentrations, so we expect larger variances. In Table
2.3 we see that this is partly true, however the estimate of ϑ is good.

2.5 The experiment

In the experiment 50, 000 mother cells were infected by Chlamydia tra-
chomatis. The multiplicity of infection (MOI) value, the ratio of the
initial number of bacteria and number of mother cells is 0.2. That is
x0 = 10, 000. The measurements correspond to 12 different antibiotic
concentrations using twofold dilution technique, meaning that ci = 2ic0,
i = 0, 1, . . . , 11. For each concentration 3 measurements were taken. For
the technical details of the experiment we refer to Eszik et al. [6].

We analyze two antibiotics: azithromycin and ciprofloxacin. These
antibiotics have different antimicrobial effects: azithromycin is a bacte-
riostatic antibiotic, meaning that it does not necessarily kill the bacte-
ria, only prevents growth, while ciprofloxacin is a bactericide antibiotic,
which usually kills bacteria. In Figures 2.3 and 2.4 we see the qPCR
measurements as a function of log2 c.

If c is large enough, i.e. at very high antibiotic concentration m(c)
is close to 0, that is Zn;x0,c ≈ x0, since all the bacteria dies without
offspring. Therefore, for c large enough we can estimate the constant a
in (2.2) as

âN =
1

N

N∑
i=1

Ci(c, x0) + log2 x0. (2.30)
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Figure 2.3: Measured (◦) and simulated (×) Ct values for azithromycin.

Figure 2.4: Measured (◦) and simulated (×) Ct values for ciprofloxacin.
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Then âN is normally distributed with mean a and variance σ2/N .
Furthermore, σε can also be estimated from these data. For azithromycin
we used the measurements where c ≥ 2−1, while for ciprofloxacin c ≥ 1.

Chlamydiae cannot replicate indefinitely, because they propagate in a
closed system, where the available nutrients are finite. A special feature
of Chlamydia is that it has an infectious elementary form that is not
capable to grow. After the infection of the host cell, it differentiates to
a reticulate body which is capable to propagate by binary division, but
the number of its divisions is limited. Then the reticulate body redif-
ferentiates into the elementary body, exits the original host cell, infects
a new one and its developmental cycle starts again in another host cell.
Our wet-laboratory experiment followed one round of the developmental
cycle, which is approximately 48 hours. Therefore, the number of gener-
ations n is typically a fixed small number, in our experiments around 10.
If c is small then there is no antibiotical effect so the bacterial population
grows freely, that is Zn,x0,0 ≈ 2nx0. We can estimate n as

n̂N = âN − log2 x0 −
1

N

N∑
i=1

Ci(c, x0).

Then n̂N is normally distributed with mean n and variance 2σ2
ε/N . To

estimate n̂N we used the smallest possible concentration, c = 2−7.
Using Proposition 2 we estimate m(c). In Figures 2.5 and 2.6 we see

the estimated means and the corresponding fitted curve m(c), where the
parameters α, β are estimated as described in (2.21). In the previous
section we showed that the best strategy is to choose few concentration
where the mean offspring is not close to 0, nor to 2. For the azithromycin
we chose c = (2−5, 2−4, 2−2, 2−1) and obtained α̂ = 9.1, β̂ = 1.12, and

ϑ̂ = 0.139. (We obtain similar estimates for various reasonable choices.)
For ciprofloxacin in Figure 2.4 we see a rapid drastic change; for c ≥ 2−2

the population dies out, while for c ≤ 2−4 the population freely grows.
We chose c = (2−4, 2−3, 2−2) and obtained α̂ = 71.8, β̂ = 2.46, ϑ̂ = 0.175.
(These values are less stable to the change in c.) In Figures 2.5 and 2.6 we
see the estimated means and the fitted curves. Simulated measurements
with the estimated values are given in Figures 2.3 and 2.4, where the
circles are the real measurements and the crosses are the simulated ones.
In both cases we obtain a remarkably good fit.
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Figure 2.5: Estimated means and the fitted curve for azithromycin.

Figure 2.6: Estimated means and the fitted curve for ciprofloxacin.
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2.6 Estimation of in vitro bactericidal po-

tency based on colony counting method

Accurately estimating the bactericidal potency is a crucial concern for
ensuring the safe and appropriate utilization of antibiotics. In Bogdanov
et al. [3] we worked out a Bienaymé–Galton–Watson branching model for
the growth of the bacterial population, and we obtained weakly consistent
asymptotically normal estimators for the relevant parameters when for
the biological measurements quantitative PCR (qPCR) method is used.
In [3] we found that the 2-parameter model fits very well to real biologi-
cal data. In this section we provide an estimator under the same model
assumptions but for different biological data: we assume that the exper-
imental data was obtained using colony counting method. The qPCR
method measures the total bacterial genom, which is the total number
of dead and alive bacterial cells multiplied by a constant. On the other
hand, colony counting gives an estimator for the extinction probabil-
ity. The basic experiment is the following. Originally, x0 bacterial cells
(e.g. Escherichia coli) are inoculated onto agar plates containing a series
of antibiotic concentration, and after the incubation period all the viable
colonies are enumerated, see e.g. Liu et al. [16].

As in [3] we assume that the bacterial population is homogeneous, in
particular, there is no resistant type. Long-term evolution of bacterial
populations with both resistant and susceptible types was investigated
in several papers using deterministic models, see Svara and Rankin [21],
Paterson et al. [19], and the references therein. Closest to our model
is the deterministic model given by Liu et al. [16], where the biological
measurements were obtained by colony counting. In [16] a deterministic
expression for the number of colony forming units was obtained in terms
of the antibiotic concentration.

The rest of this Section is organized as follows. The model and some
basic properties are given in Subsection 2.6.1. The estimation of the
parameters for fixed antibiotic concentration is provided in Subsection
2.6.2. Subsection 2.6.3 contains a small simulation study.

2.6.1 The theoretical model

Consider a simple Galton–Watson branching process where each bacte-
ria either dies (leaves no offspring) or divides (leaves 2 offsprings) with
respective concentration dependent probabilities

p0 = p0(c), p2 = p2(c) = 1− p0(c).

Let f(s) = fc(s) = p0 +p2s
2 denote the offspring generating function and

m = m(c) = 2p2(c) the offspring mean if the antibiotic concentration is
c. The process starts with a single ancestor X0;c = 1, and
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Xn+1;c =

Xn;c∑
i=1

ξ
(n)
i;c ,

where {ξc, ξ(n)
i;c : i ≥ 1, n ≥ 1} are iid random variables with generating

function fc. We further assume that the offspring distribution is given
by

p2(c) =
1

1 + αcβ
, (2.31)

where α > 0, β > 0 are unknown parameters. Note that as m = 2p2 this
is the same assumption as in [3]. Under this model the MIC, the smallest
antibiotic concentration preventing bacterial growth, is the smallest c for
which m(c) = 1, that is α−1/β.

If m ≤ 1 then the process dies out almost surely, while if the process is
supercritical, i.e. m > 1 then the probability of extinction is the smaller
root of fc(q) = q, which is in our setup

q(c) =


1−p2(c)
p2(c)

, if p2(c) > 1/2,

1, if p2(c) ≤ 1/2.
(2.32)

2.6.2 Estimation of the parameters

Assume that the initial number of bacterial cells is x0, that is we observe
x0 independent copies of the Galton–Watson process (Xn;c). Then the
number Yc of living colonies has binomial distribution with parameters
x0 and 1− q(c). Therefore, the natural estimator for q(c) is

q̂(c) = 1− Yc
x0

.

The law of large numbers and the central limit theorem implies that q̂(c)
is a weakly consistent estimator, and as x0 →∞

√
x0√

q(c)(1− q(c))
(q̂(c)− q(c)) D−→ N (0, 1). (2.33)

From (2.32) we see that we can estimate p2(c) only if q(c) < 1, or
equivalently m(c) > 1, in which case

p̂2(c) =
1

1 + q̂(c)
. (2.34)

We assume that the offspring mean as a function of c satisfies (2.31) for
some unknown parameters α > 0, β > 0. Rewriting (2.31)

logα + β log c = log

(
1

p2(c)
− 1

)
.
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Assume that we have measurements for K ≥ 2 different concentrations
c1 < c2 < . . . < cK , such that m(cK) > 1. As in (2.34), we obtain
the estimator p̂2(ci) at different concentrations, from which, using simple
least squares estimator we obtain the estimator

β̂ =
K
∑K

i=1 fi`i −
∑K

i=1 fiL1

KL2 − L2
1

,

α̂ = exp

{∑K
i=1 fi − β̂L1

K

}
,

where to ease notation we write

fi = log

(
1

p̂2(ci)
− 1

)
, `i = log ci,

and

L1 =
K∑
i=1

`i, L2 =
K∑
i=1

`2
i .

By the Cauchy–Schwarz inequality the denominator of β̂ is strictly pos-
itive for K ≥ 2.

Under the assumption (2.31) the MIC equals ϑ = α−1/β, therefore its
natural estimator is

ϑ̂ = α̂−1/β̂.

Using (2.33), as in [3] we can prove that these estimators are asymptot-
ically normal. Introduce the notation

ki =
p2(ci)

1− p2(ci)

√
q(ci)(1− q(ci)), i = 1, 2, . . . , K.

Proposition 4. Assume that c1 < . . . < cK are given concentrations such
that m(cK) > 1. Then as x0 → ∞, α̂, β̂, and ϑ̂ are weakly consistent
estimators of the corresponding quantities. Furthermore, as x0 →∞

√
x0(α̂− α, β̂ − β)

D−→ (U, V ),

where (U, V ) is a two-dimensional normal random vector with mean 0
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and covariance matrix

(
σ2
α σαβ

σαβ σ2
β

)
, where

σ2
α =

α2

(KL2 − L2
1)

2

K∑
i=1

k2
i (L2 − L1`i)

2,

σαβ =
α

(KL2 − L2
1)

2

K∑
i=1

k2
i (K`i − L1)(L2 − L1`i),

σ2
β =

1

(KL2 − L2
1)

2

K∑
i=1

k2
i (K`i − L1)2 ,

and √
x0(ϑ̂− ϑ)

D−→ N (0, σ2
ϑ),

as x0 →∞, with

σ2
ϑ =

ϑ2 (logα)2

β2(KL2 − L2
1)2

K∑
i=1

k2
i

(
L2 − L1`i

logα
− K`i − L1

β

)2

.

2.6.3 Simulation study

If m(cK) > 1, then regardless of the fixed values c = (c1, . . . , cK) the

estimate (α̂, β̂) is weakly consistent and asymptotically normal as x0 →
∞. However, the asymptotic variances in Proposition 4 do depend on
the specific choice of K ≥ 2 and the values c1 < . . . < cK . Intuitively,
it is clear that we should choose values for the concentrations where the
derivative of m is large, that is m is close to 1, see Figure 2.2.

As in [3] we compare two rather different biologically relevant sce-
narios: (α, β) = (10, 1) and (α, β) = (100, 2). In Figure 2.2 we see the
mean function for these two cases. Table 2.4 contains the theoretical
variances given in Proposition 4 for different choices of the concentra-
tions. For the steeper function ((α, β) = (100, 2)) the variances of α and
β are significantly larger, however the variance of the MIC is of the same
order. We also see that a wrong choice of the concentrations might re-
sult much larger variations. For c3 all the concentrations are small, the
antibiotic does not have any effect, so we cannot make a good estimate
from observations at these concentrations.

concentrations σ2
10 σ2

1 σ2
0.1 σ2

100 σ2
2 σ2

0.1

c1 = (2−7, 2−4) 2424 2.87 0.015 2.98 · 106 38 0.0027
c2 = (2−5, 2−4.5, 2−3.4) 875 1.36 0.0016 3.54 · 105 5.5 0.0014
c3 = (2−9, 2−8, 2−7) 8.99 · 104 32 2.89 3.84 · 108 1448 29

Table 2.4: Asymptotic variances for (α, β) = (10, 1) and (α, β) = (100, 2).
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x0 α β ϑ σ̂2
α σ̂α,β σ̂2

β σ̂2
ϑ

50 11.25 1.01 0.101 1464 41 1.3 0.002
100 10.79 1.01 0.1004 1349 43 1.48 0.0019
300 10.23 1.003 0.1 981 36.2 1.44 0.0018
500 10.17 1.003 0.1 931 34.9 1.34 0.0016
∞ 10 1 0.1 875 34 1.36 0.0017

Table 2.5: Empirical mean and variances for (α, β) = (10, 1).

Choosing the right antibiotic concentration is important to get a good
estimate. The larger variances above are not surprising, because in the
present setup the estimator for the mean m(c) works only for supercritical
processes, that is for those c, for which m(c) > 1. That is we can sample
only from the upper part of the mean function m(c) in Figure 2.2. This is
in sharp contrast to the situation treated in [3], where the total number
of dead and alive bacteria was counted, and the estimator for the mean
works for any c.

With α = 10, β = 1 and concentration vector c2 we simulate the pro-
cess as follows. For a given concentration ck, k = 1, . . . , K, we calculate
p2(ck) from (2.31). From each measurement we calculate the estimation

(α̂, β̂) as described in (2.21). We simulated the measurements 1000 times.

The resulting means and empirical variances of
√
x0(α̂ − α, β̂ − β) and

√
x0(ϑ̂ − ϑ) are given in Table 2.5. We see that even for small initial

number of bacteria the empirical variances are close to the theoretical
counterparts.



3

Branching model with state de-
pendent offspring distribution
for Chlamydia spread

Chlamydiae are obligate intracellular bacteria which have a unique two-
stage developmental cycle, with two forms, the elementary body (EB)
and the reticulate body (RB). The EB is the infectious form and it is not
capable to multiply. After infecting the host cell, the EB differentiates
to RB. The RB multiplies in the host cell by binary fission. After some
time RBs redifferentiate to EBs. The EBs are then released from the
host cell ready to infect new host cells. It was shown recently by Lee et
al. [15] using 3D electron microscopy method and manual counting that
this conversion occurs asynchronously, so that some RBs are converting
into EBs, while others continue to divide, see in Figure 3.1.

Figure 3.1 showes entire chlamydial inclusions from representative
infected cells at 16, 28, and 36 h.p.i. (hours post-infection), scale bar:
1000 nm. Pie charts showing mean numbers of each chlamydial form per
inclusion are grouped into three developmental phases: RB replication
only (no IBs or EBs), onset of RB-to-EB conversion (IBs + EBs ≤50% of
chlamydiae), and EB accumulation (IBs + EBs>50% of chlamydiae). All
four chlamydial forms inside each inclusion were identified and counted:
12 h.p.i. (n = 50), 16 h.p.i. (n = 31), 20 h.p.i. (n = 22), 24 h.p.i.
(n = 10), 28 h.p.i. (n = 13), 32 h.p.i. (n = 10), 36 h.p.i. (n = 9), 40
h.p.i. (n = 10), now n specifies the number of inclusions. The inclusion is
a distinct region within the cell where the conversion from the EB form to
the RB form, and from RB to EB, occurs. Ensuring that these inclusions
are identical copies of each other is crucial. It’s also crucial to note that
if such a process is halted to count the RB and EB bodies, then the
process stops and cannot continue. The intermediate body (IB) serves
as the transitional stage between the RB and the EB forms, although it
can be effectively regarded as an infectious form.

33



34

Figure 3.1: Temporal analysis of chlamydial developmental forms using
a three-dimensional electron microscopy approach, [15].

Mathematical models suggested up to now are unable to reproduce
this asynchronous conversion, since both in the deterministic differential
equation model in [23] and in the stochastic model in [5] the optimal con-
version strategy is the so-called ‘bang-bang’ strategy, that is, up to some
time the population duplicates, then converts to EBs with the maximal
possible rate.

Branching processes are well-known tools to model cell proliferation,
see the monographs by Haccou et al. [9], Kimmel and Axelrod [14]. In
[5], a continuous time Markov chain model was introduced with time-
dependent transition rates, and the cell death was assumed to be inde-
pendent of the population process. However, as heavily infected cells are
more likely to die, the latter independence assumption, while mathemat-
ically convenient, is not realistic. In this Chapter we use a discrete-time
branching process model, where the probability of duplication and the
time of the cell death depends on the state of the process. Finding the
optimal conversion strategy leads to a stochastic optimization problem, a
so-called discrete-time Markov control process, see e.g. Hernández-Lerma
and Lasserre [10]. The only input of the process is a death-probability
function d(x, y), which determines the probability that the host cell dies
if there are x RBs and y EBs. Simulation study shows that with a simple
death-probability function our model is able to capture the real behavior
described recently in [15].

This Chapter is organized as follows. In section 3.1 we describe our
theoretical model. In sections 3.2 and 3.3 we analyze the cases when the
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host cell’s death time is independent of, or depends on the process. The
latter case is biologically more relevant. Section 3.4 contains a simulation
study.

3.1 The theoretical model

Consider a two-type discrete-time Galton–Watson branching process Xπ =
(Xπ

n)n = (Xπ
n , Y

π
n )n, n ≥ 0, together with a sequence of probabilities

π = (pn)n. We assume that π is adapted to the natural filtration (Fn)n
generated by X, i.e. Fn = σ(Xπ

k , k ≤ n). Initially Xπ
0 = (1, 0), and the

process evolves as

Xπ
n+1 =

Xπ
n∑

i=1

ξn,i,

Y π
n+1 = Y π

n +

Xπ
n∑

i=1

(
1− ξn,i

2

)
, n ≥ 0,

(3.1)

where (ξn, ξn,i), n = 1, 2, . . . , i = 1, 2, . . . are conditionally independent
random variables given (pn)n, for fix n the variables (ξn, ξn,i), i = 1, 2, . . .
are identically distributed, such that P(ξn = 2|pn) = pn, P(ξn = 0|pn) =
1− pn.

Here Xπ
n stands for the number of RBs and Y π

n for the number of EBs
in generation n. In generation n each RB duplicates with probability pn
and converts into EB with probability 1−pn. If ξn,i = 2, then the ith RB
in generation n duplicates, while if ξn,i = 0 then it converts to EB. The
process π, the sequence of duplication probabilities, is adapted to (Fn)n,
which intuitively means that based on the whole past of the process the
population determines its duplication probabilities. In what follows, we
call the random process π a strategy.

For the conditional expectations we obtain

E[(Xπ
n+1, Y

π
n+1)|Fn] = (2pnX

π
n , Y

π
n + (1− pn)Xπ

n )

= Xπ
n

(
2pn 1− pn
0 1

)
.

(3.2)

If pn depends only on the actual state (Xn, Yn), then the process is Marko-
vian.

The process ends at a random time T ∈ {1, 2, . . .} when the infected
host cell dies. The aim of the bacterial population is to produce as many
EBs as possible, that is to maximize E(Y π

T ) over all possible strategies
(pn). Denoting by P the set of all strategies, a strategy q is optimal, if

sup
π∈P

E(Y π
T ) = E(Y q

T ).
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Note that we do not claim neither existence nor uniqueness, see the
remark after Theorem 1.

The cause of the host cell’s death and the distribution of its time
is not yet well-understood. Experiments indicate that the lysis times
of different host cells vary between 48 and 72 hpi, see Elwell et al. [4].
Here we consider two models. If T is independent of the process, than
we can calculate explicitly an optimal strategy, which turns out to be
deterministic ’bang-bang’ strategy. Depending on the distribution of T ,
the population doubles up to some deterministic time (pn = 1), and then
all the RBs convert to EBs immediately (pn = 0). This phenomena is
analogous to the findings in the continuous time setup in [5], where in-
dependence of T and Xπ was tacitly assumed. Therefore, this model
cannot explain the asynchronous conversion. In our second model we
assume that the host cell dies at time n with a probability depending on
Xπ
n, such that more bacteria imply higher death probability. In this more

complex and more realistic model we can determine an optimal strategy
only numerically. We found that asynchronous conversion happens natu-
rally. In simulations we obtained similar behavior as in real experiments
in Figure 3.1.

3.2 Death time T is independent of X

Assume that the host cell’s death time T is independent of the process
Xπ. Introduce the notation π` = (1, 1, . . . , 1, 0, 0, . . .), where the first
` ≥ 0 components are 1.

Theorem 1. Assume that T ≥ 1 is bounded and it is independent of Xπ.
Let ` be such that

2`P(T > `) = sup
k≥0

2kP(T > k). (3.3)

Then π` is an optimal strategy, with optimal value

sup
π∈P

E(Y π
T ) = sup

k≥0
2kP(T > k).

Note that if T is unbounded, then it is possible that

lim
k→∞

2kP(T > k) =∞,

in which case it is easy to see that there is no optimal strategy.
Furthermore, one can construct distributions for which ` in (3.3) is

not unique, showing that the optimal strategy is not necessarily unique.
Indeed, the simplest example is a two-valued T for which P(T = 1) =
P(T = 2) = 1

2
. Then both π0 and π1 are optimal strategies with optimal

value 1. Under π0 the gain is constant 1, i.e. deterministically Y π0
T ≡ 1,

while under π1 the gain is 2 or 0 with probability 1
2
− 1

2
.
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Proof. To ease notation we suppress π. Since T ≤ N , for some N , in an
optimal strategy pN−1 = 0. Next, using the independence of T and X

E [YT |T > N − 2,FN−2]

= YN−2 + 2pN−2XN−2P(T = N |T > N − 2) +XN−2(1− pN−2)

= YN−2 +XN−2 (1 + pN−2(2P(T = N |T > N − 2)− 1)) .

Thus, teh resulting expression is linear in pN−2, therefore chossing pN−2 =
0 or 1, maximizes the expectation. (We emphasize that there is no
uniqueness in general, since if P(T = N |T > N − 2) = 1

2
, than any

pN−2 ∈ [0, 1] maximizes the expression.) Since pN−2 only depends on the
distribution of T , and not on (XN−2, YN−2), we have

E[YT |T > N − 3,FN−3]

= YN−3 +XN−3(1− pN−3)

+XN−32pN−3(1− pN−2)P(T > N − 2|T > N − 3)

+XN−34pN−3pN−2P(T > N − 1|T > N − 3)

= YN−3 +XN−3(1 + pN−3(2(1− pN−2)P(T > N − 2|T > N − 3)

+ 4pN−2P(T > N − 1|T > N − 3)− 1)).

Again, the resulting expression is linear in pN−3, therefore choosing pN−3 =
0 or 1, maximizes the expectation. Iteration gives that there is an optimal
strategy for which each pi is either 0 or 1.

This means that there exists an optimal strategy of the form πk, for
some k. Under πk the population doubles up to generation k, then all
the RBs convert to EBs. These strategies are easy to compare. Under
πk simply YT = I(T ≥ k + 1)2k,

E(YT ) = P(T > k)2k.

Taking the maximum in k, we obtain that π` is indeed an optimal strat-
egy.

One can consider a more general model, in which each bacterium cell
is allowed to wait, that is, neither divides, nor converts. Then instead of
a single pn, we have a vector (pn, qn), such that P(ξn = 2|(pn, qn)) = pn,
P(ξn = 1|(pn, qn)) = qn, and P(ξn = 0|(pn, qn)) = 1 − pn − qn. In this
more general setting Theorem 1 remains true with the identical proof.
Intuitively it is clear that the population loses nothing by adding RBs,
as T is independent of X. Therefore, in an optimal startegy qn ≡ 0.
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3.3 Death time T depends on X

Here we assume that T , the death time depends on the process Xπ. Given
that the host cell is alive in generation n− 1, the probability that it dies
in the next step is d(Xπ

n , Y
π
n ), that is

P(T = n|T > n− 1,Fn) = d(Xπ
n , Y

π
n ).

The deterministic death-probaility function d describes the effect of RBs
and EBs to cell’s death. It is not clear which type is more harmful to
the host cell, since RB particles are larger, while EB particles secrete
chemicals poisoning the host cell, see e.g. [4]. Assume that

∃ C > 0 such that d(x, y) = 1 whenever x+ y ≥ C. (3.4)

That is, if the total number of bacteria exceeds C the host cell necessarily
dies. This is biologically a natural assumption.

In this scenario the process is a special discrete-time Markov control
process (or Markov decision process). For theory and properties of these
processes we refer to the monograph by Hernández-Lerma and Lasserre
[10]. To see that our model fits in the theory we slightly modify our
process. Recall that Xn = Xπ

n depends on the strategy π, however for

notational ease we suppress the upper index. Let X̃n = XnI(T > n),

Ỹn = YnI(T ≥ n). Note that X̃T = 0, ỸT = YT , and ỸT+1 = 0, which
is convenient at the definition of the reward function in (3.6). Define a

Markov chain (X̃n, Ỹn)n on the state space {0, 1, . . .}2, where the possi-
ble controls are given by the duplication probabilities pn ∈ [0, 1]. The
transition probabilities are, for x > 0, y ≥ 0,

P
(
X̃n+1 = 2j, Ỹn+1 = y + x− j|X̃n = x, Ỹn = y, pn = p

)
=

(
x

j

)
pj(1− p)x−j(1− d(2j, y + x− j)), j = 1, . . . , x,

P
(
X̃n+1 = 0, Ỹn+1 = y + x− j|X̃n = x, Ỹn = y, pn = p

)
=

(
x

j

)
pj(1− p)x−jd(2j, y + x− j), j = 1, . . . , x,

P
(
X̃n+1 = 0, Ỹn+1 = y + x|X̃n = x, Ỹn = y, pn = p

)
= (1− p)x,

(3.5)

while if x = 0

P(X̃n+1 = 0, Ỹn+1 = 0|X̃n = 0, Ỹn = y, pn = p) = 1.

The first two formulae correspond to the possibility that j ≥ 1 bacteria
duplicate (with probability

(
x
j

)
pj(1 − p)x−j) and the host cell remains
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alive, or die, while the third formula corresponds to the possibility that
all the RBs convert to EBs, and in this case it does not matter whether
the host cell dies or not. The fourth equation states that (0, 0) is the
unique absorbing state, which is a convenient condition for the form of
the reward function.

The reward function (−1 times the cost function in [10]) gives the
number of EBs upon cell’s death, that is

c(x, y) =

{
y, x = 0,

0, otherwise
(3.6)

Define the value function

h(x, y) =

{
supπ∈P E

[∑∞
n=0 c(X̃n, Ỹn)|(X̃0, Ỹ0) = (x, y)

]
, d(x, y) < 1,

y, d(x, y) = 1.

(3.7)
which is the optimal number of expected EBs upon host cell’s death,
given that the host cell is alive and (X̃0, Ỹ0) = (x, y), if d(x, y) < 1. If
d(x, y) = 1 then the cell cannot be alive at state (x, y), thus the reward
is y. Clearly h(0, y) = y. Due to the fact that (0, 0) is the only absorbing
state in the infinite sum in (3.7) there is only one non-zero term.

We are looking for the value h(x, y) and an optimal strategy π. This
stochastic optimization problem is in fact a finite-horizon problem, see
[10, Chapter 3]. Indeed, from any state (X̃n, Ỹn) = (x, y) either the total
number of bacteria increases (j ≥ 1 and the host cell survives in (3.5)),

or X̃n+1 = 0, meaning that the cell dies. Therefore, by condition (3.4)
from any initial state (x, y) the process reaches the absorbing state (0, 0)
in at most C+ 1 steps. So in (3.7) in the summation the upper limit can
be changed to C. Using Theorem 3.2.1 in [10] both the value function h
and the optimal strategy can be determined by backward induction on
time. In our setup, backward induction on the total number of bacteria
is more natural, and this goes as follows.

Theorem 2. Assume that (3.4) holds. Then h(x, y) = y if x + y ≥ C,
and h(0, y) = y for any y. Assume that h(x, y) is determined whenever
x+ y ≥ m for some m ≤ C, and let x+ y = m− 1. Then

h(x, y) = max
p∈[0,1]

x∑
j=0

(
x

j

)
pj(1− p)x−j

× [d(2j, y + x− j)(y + x− j) + (1− d(2j, y + x− j))h(2j, y + x− j)] ,
(3.8)

where all the values of h on the right-hand side are determined. The
maximum of the continuous function is attained at p(x, y), which gives
an optimal strategy.
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Proof. From definition (3.7) we see that h(x, y) = y if x + y ≥ C or
x = 0. Formula (3.8) follows from the Markovian structure and from the
transition probabilities in (3.5).

Indeed, from (x, y), x + y = m − 1, the process can jump to states
(0, y+x− j), j = 0, 1 . . . , x, and (2j, y+x− j), j = 1, 2, . . . , x, depending
on whether the host cell dies or not. In the first case h(0, y + x − j) =
y + x − j, while in the second case the total number of bacteria equals
y + x+ j ≥ m, therefore h(2j, y + x− j) is determined by the induction
assumption. Thus all the quantities in (3.8) are known, so h(x, y) can be
calculated.

One could consider again the more general model mentioned at the
end of Section 3.2, where each bacterium is allowed to wait. Then instead
of a single pn, the possible controls are given by a vector (pn, qn), with
pn + qn ≤ 1. A version of Theorem 2 remains true, except in (3.8)
the maximum is taken in (p, q). We found that for reasonable death-
probability functions (i.e. d2 in (3.12)), the optimal values of q are small,
or even 0. Here we will present an example, where C = 200, and the death
probility function see 3.12, where now c0 = 0.003, and (α, β) = (2, 2). We
will see in Section 3.4 that these are sensible parameter choices. These
numerical computations even with a computer take a very long time,
so we cannot choose the important auxiliary parameter (C) to be large.
However, we encountered a problem here, as illustrated by the following
simple example

h(1, 2) = max
p+q≤1

{q[d(1, 2) · 2 + (1− d(1, 2)) · h(1, 2)]

+ (1− p− q)[d(0, 3) · 3 + (1− d(0, 3)) · h(0, 3)]

+ p[d(2, 2) · 2 + (1− d(2, 2)) · h(2, 2)]}

(3.9)

In this case, both h(0, 3) and h(2, 2) values are known. However, we
encountered a problem that did not occur in Theorem 2, namely the
possibility of remaining in the same state, which is now (1, 2) in example
(3.9). However, the value of h(1, 2) is unknown, and we aim to calculate
it presently. In order to address this issue, we adjust our model as follows.
We make the assumption that transitioning to the (x, y) state from the
same (x, y) state is not possible, and that the host cell cannot perish
while in the (x, y) state. Therefore, we need to divide the formula by
(1 − q)(1 − d(x, y)). What we are calculating is the probability that
we do not transition to the same state for which h is computed, and
simultaneously, the host cell does not perish in that state.

Theorem 3. Assume that (3.4) holds. Then h(x, y) = y if x + y ≥ C,
and h(0, y) = y for any y. Assume that h(x, y) is determined whenever
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x+ y ≥ m for some m ≤ C, and let x+ y = m− 1. Then

h(x, y) = max
p+q≤1

x∑
j=0

x−j∑
`=0

(
x

j

)(
x− j
`

)
pjq`(1− p− q)x−j−`

× [d(2j + `, y + x− j − `)(y + x− j − `)
+(1− d(2j + `, y + x− j − `))h(2j + `, y + x− j − `)] /A(x, y)

(3.10)

where A(x, y) = (1− q)(1− d(x, y)), and all the values of h on the right-
hand side are determined. The maximum of the continuous function is
attained at p(x, y) + q(x, y) ≤ 1, which gives an optimal strategy. Here,
we exclude the scenario where both j = 0 and ` = x are simultaneously
satisfied.

The proof of the Theorem 3 remains identical to that of Theorem 2.

Figure 3.2: The numerical p (left) and q values (right) corresponding to
the death-probability function (3.12) with C = 200, (α, β) = (2, 2), and
c0 = 0.003.

In Figure 3.2, we observe the optimal values for p and q when C = 200,
(α, β) = (2, 2), and c0 = 0.003. It can be observed that the q values
are zero in all instances. It’s worth reiterating that even with the aid of
software, determining these optimal values can be time-consuming. The
question may arise whether C = 200 suffices as a threshold choice. Our
conjecture is that if the value c0 is appropriately selected, then as C →∞,
we have h(x, y) → ax,y, for all (x, y). In Section 3.4, it is demonstrated
that the aforementioned parameter selection is indeed correct.

3.4 Simulation studies

For a given death-probability function d, we can determine numerically
the value function and an optimal strategy using Theorem 2. Then,



3.4. Simulation studies 42

the process is a simple Galton–Watson branching process with state-
dependent offspring distribution, which can be simulated easily. In each
examples below the empirical mean of RBs and EBs are calculated from
1000 simulations.

First we consider a simple threshold death-probability function, that
is for some C > 0

d(x, y) = d1(x+ y) =

{
1, if x+ y ≥ C,

0, otherwise.
(3.11)

This is a simple, but biologically very unnatural death-probability func-
tion. In this case, typically some bacteria convert to EBs at an early
stage, while others still divide. As long as the total number of bacteria
is below C, the population is safe, in the sense that the host cell cannot
die. Consequently, the population does not rush to expand, rather tries
to find a state, from which the optimal value C − 1 can be obtained
deterministically. Indeed, the population exhibits a slow growth, tak-
ing numerous generations to eventually reach the optimal value C − 1.
This unnatural behavior is apparent in Figure 3.4, where we plotted six
trajectories of the process, with C = 300.

Figure 3.3: The mean number of EBs and RBs for the death-probability
(3.11) with C = 300.

For simulations we choose C = 300. The value function is almost
constant 299 with h(1, 0) = 298.7. In Figure 3.3 we see that the number
of RBs is typically small, while the number of EBs starts to increase at
an early stage. In Figure 3.4 there are six trajectories of the process. On
Figure 3.11 (top left) we see the numerical p values. The structure of
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the death-probability function causes the discontinuity of the p function.
Note e.g. that p(x, y) ≡ 1 on the line {(x, y) : 2x+ y = 299}, since after
one duplication the population reaches the maximum possible value 299.

Figure 3.4: Simulations of the process with death-probability (3.11) and
C = 300.

Consider a smoother death-probabilityfunction

d2(x, y) =

{
1− e−c0(αx+βy), x+ y ≤ C − 1,

1, x+ y ≥ C.
(3.12)

When the total number of bacteria is small, then it is unlikely that the
host cell dies. The parameters α, β allows us to tune the relative effect
of EBs and RBs on the host cell’s death. On the one hand RBs are much
larger than EBs suggesting α > β, on the other hand EBs secrete chemi-
cals enhancing cell death. Note that biological experiments suggests that
chlamydia controls host cell survival, see [4, p. 392]. We explored three
scenarios, with c0 = 0.0003 in each cases and (α, β) = (1, 3), (2, 2), and
(3, 1), with C = 2500, 1500, 3000, respectively. We chose C large enough,
so that an optimal strategy does not depend on its specific value. The
rationale of choice of the different threshold values C can be seen from
Figure 3.11. For the empirical mean of 1000 simulations and some typical
trajectories see Figures 3.5 – 3.10.

The population dynamics of RB and EB cells depend strongly on the
value (α, β). For (α, β) = (1, 3) the relative effect of EBs on cell-death is
much larger. Therefore, the process prefer to have only RBs up to some
point (generation 11), and then all RBs convert to EBs immediately,
resulting an ‘bang-bang’ strategy. The exponential increase of RBs and
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Figure 3.5: The mean number of EBs and RBs for the death-probability
(3.12), with (α, β) = (1, 3).

Figure 3.6: Simulations of the process with death-probability (3.12), with
(α, β) = (1, 3).
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Figure 3.7: The mean and conditional mean of EBs and RBs for the
death-probability (3.12), with (α, β) = (2, 2).

the sudden change is clearly visible both on the means (Figure 3.5), and
on the trajectories (Figure 3.6). Here h(1, 0) = 605. The optimal p values
on Figure 3.11 (top right) show the same pattern: in each state either all
cells duplicate (p = 1), or all cells convert (p = 0).

For (α, β) = (2, 2) the relative effect of RBs and EBs is the same.
The RBs duplicate and increase exponentially fast up to generation 9,
then they start to convert to EBs. In Figures 3.7 and 3.8 we see that
in generations 9–12 the EBs and RBs simultaneously appear, showing
the asynchronous conversion obtained in real experiments in [15]. Here
h(1, 0) = 324.

In Figure 3.7 we also plotted the empirical means of the EBs and
RBs conditioned on that the host cell is alive. In the real experiment
in Lee et al. [15] only those inclusions are counted where the host cell is
alive. This clearly causes a bias. We can transform the generation time
to real time, hours-post-infection (hpi). After the EB enters the host
cell, it takes approximately 12 hours to convert to RB and to start to
duplicate. Between 12 and 24 hpi the doubling time is about 1.8 hours,
and around 28 hpi RB-EB conversion starts, see [15, p. 2]. In Table
3.1 we copied the measurements from [15] together with the simulation
results corresponding to different values of (α, β) around (2, 2), to see
that our model captures remarkably well the experimental data.

For the optimal p values in Figure 3.11 (bottom left) we do see values
other than 0 and 1. There are no big jumps in the p values, which makes
it biologically relevant.

Finally, for (α, β) = (3, 1) the relative effect of RBs is much larger,
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Figure 3.8: Simulations of the process with death-probability (3.12), with
(α, β) = (2, 2).

Figure 3.9: The mean number of EBs and RBs for the death-probability
(3.12), with (α, β) = (3, 1).
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(α, β)
gen 0 3 5 7 10 11 12 13
hpi 12 16 20 24 28 32 36 40

(1.8, 2.2)
RB 1 8 32 128 634 286 286 87
EB 0 0 0 0 194 687 687 940

(1.9, 2.1)
RB 1 8 32 128 500 314 177 104
EB 0 0 0 0 262 603 825 945

(2, 2)
RB 1 8 32 128 429 309 211 136
EB 0 0 0 0 287 563 768 910

(2.1, 1.9)
RB 1 8 32 128 390 323 244 177
EB 0 0 0 0 268 497 697 858

(2.2, 1.8)
RB 1 8 32 128 356 314 256 195
EB 0 0 0 0 261 460 648 804

measured
RB 1.3 7.6 34 105 385 507 271 171
EB 0 0 0 3.7 192 656 706 751

Table 3.1: Conditional means for different values of (α, β) in our simula-
tions, and real data from Lee et al. [15] (last two rows)

Figure 3.10: Simulations of the process with death-probability (3.12),
with (α, β) = (3, 1).

which implies a shorter period of exponential increase in the RB popula-
tion, and a longer coexistence of RB and EB population, see Figures 3.9
and 3.10. These results suggest that the effect of RBs on host cell’s death
is larger, or at least as large as the effect of EBs. Here h(1, 0) = 285.7.
The p values in Figure 3.11 are even smoother than in the previous case,
and the population prefers to have not too many RBs.

We note that calculating the optimal probabilities is slow. From (3.8)
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Figure 3.11: The numerical p values corresponding to the death-
probability function (3.11) with C = 300 (top left), and to (3.12) with
(α, β) = (1, 3) (top right), (α, β) = (2, 2) (bottom left), (α, β) = (3, 1)
(bottom right).

we see that the runtime is O(C3). For the death-probability function d2

in (3.12) with C = 3000 it takes about 12 hours on a 5-year-old normal
PC. Once we have the optimal probabilities simulations are fast. We
calculated the optimal probabilities with the given c0 = 0.0003, in the
neighborhood of (α, β) = (2, 2). Simulations show that the optimal fit to
the measurements is obtained around (2, 2), (2.1, 1.9), see Table 3.1.



4

Branching model for the spread
of Chlamydia under the influ-
ence of antibiotics.

In Chapter 2 we formulated a model depicting the rise in bacterial count
in relation to the concentration of antibiotics. We defined the expected
value of the offspring as m(c) and proceeded to fit a two-parameter func-
tion to it. Through our analysis, we observed that the parameters exhibit
weakly consistency and asymptotic normality. As for real data, we ana-
lyzed the measurement results of the Chlamydia trachomatis bacterium.

In Chapter 3, we developed a model to characterize the optimal spread
of Chlamydia. We were able to explicitly define the optimal strategy in
the case where the time of host cell death was independent of the process,
irrespective of the number of RBs and EBs within the host cell. As far
as we are aware, the pending case has not been dealt with before. In this
instance, we were able to numerically determine the optimal strategy,
and we gave the conditional means for different values of (α, β) in our
simulations, see in Table 3.1. We can conclude that there exists a high
degree of similarity between the simulated data and the measured data.
It’s worth noting that antibiotics were not considered in that Chapter.

In this Chapter, we investigate the combined behavior of the two
models, specifically determining the optimal spread of Chlamydia in the
presence of antibiotic concentration. It’s essential to emphasize that,
as far as our knowledge extends, this does not involve actual measured
data; however, it addresses a biologically relevant question entirely. So
the novelty lies in the fact that an RB can either duplicate, transform into
an EB, or undergo cell death. Initially, we neglect the scenario in which
EBs can not perish, see in Section 4.1. Consequently, we require a three-
type Galton–Watson process, wherein RBs, EBs, and deceased entities
are treated distinctly. Following that, in Section 4.2 we also explore the
scenario where the antibiotic affects both the RB and the EB.

49
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4.1 The theoretical model (the antibiotic

has no effect on EB)

Consider a three-type discrete-time Galton–Watson branching process
Xπ = (Xπ

n)n = (Xπ
n , Y

π
n , Z

π
n ), n ≥ 0, together with a sequence of proba-

bilities π = (pn)n. We assume that π is adapted to the natural filtration
(Fn)n generated by Xπ, i.e. Fn = σ(Xπ

k , k ≤ n). Initially Xπ
0 = (1, 0, 0),

and the process evolves as

Xπ
n+1 =

Xπ
n∑

i=1

ξn,i,

Y π
n+1 = Y π

n +

Xπ
n∑

i=1

ηn,i,

Zπ
n+1 = Zπ

n +

Xπ
n∑

i=1

ζn,i, n ≥ 0,

where (ξn, ηn, ζn), (ξn,i, ηn,i, ζn,i) n = 1, 2, . . ., i = 1, 2, . . . are condition-
ally independent random variables given (pn)n, for fix n the variables are
identically distributed, such that

P ((ξn, ηn, ζn) = (2, 0, 0)|pn) = pn,

P ((ξn, ηn, ζn) = (0, 1, 0)|pn) = 1− pn − pc,
P ((ξn, ηn, ζn) = (0, 0, 1)|pn) = pc.

Xπ
n and Y π

n again stands for the number of RBs and number of EBs
in generation n, while Zπ

n denotes the number of dead in generation n.
In generation n each RB duplicates with probability pn, or die, with
a predetermined probability pc, or converts into EB with probability
1 − pn − pc. It’s worth mentioning that pc remains independent of the
current generation, and it represents the probability of bacterial demise,
contingent upon the antibiotic concentration. If (ξn,i, ηn,i, ζn,i = (2, 0, 0),
then the ith RB in generation n duplicates, if (ξn,i, ηn,i, ζn,i = (0, 1, 0)
then the ith RB converts to EB in generation n, while if (ξn,i, ηn,i, ζn,i =
(0, 0, 1) then the ith RB died in generation n. Similarly, we call π the
strategy, the sequence of duplication probabilities is adapted to (Fn)n.

For the conditional expectations we obtain

E[(Xπ
n+1, Y

π
n+1, Z

π
n+1)|Fn] = (2pnX

π
n , Y

π
n + (1− pn − pc)Xπ

n , Z
π
n + pcX

π
n )

= Xπ
n

2pn 1− pn − pc pc
0 1 0
0 0 1

 .
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The process also ends at a random time T ∈ {1, 2, . . .} and, if denoting
by P the set of all strategies, a strategy q is optimal, if

sup
π∈P

E(Y π
T ) = E(Y q

T ).

As observed in Section 3.2, the independent case cannot exhibit asym-
metric behavior. Hence, we will solely focus on the dependent case.

4.1.1 Death time T depends on X, and the antibi-
otic has no effect on EB

Assume that T , the death time depends on the process Xπ, and the
antibiotic has effect on RB, and has no effect on EB. Given that the host
cell is alive in generation n − 1, the probability that it dies in the next
step is d(Xπ

n , Y
π
n , Z

π
n ), that is

P(T = n|T > n− 1,Fn) = d(Xπ
n , Y

π
n , Z

π
n ).

The deterministic death-probability function d describes the effect of RBs,
EBs, and dead to cell’s death. Assume that

∃ C > 0 such that d(x, y, z) = 1 whenever x+ y + z ≥ C. (4.1)

That is, if the total number of bacteria exceeds C the host cell necessarily
dies. We again modify our process to fit in [10]. Let X̃n = XnI(T > n),

Ỹn = YnI(T ≥ n), and Z̃n = ZnI(T ≥ n). Then the state space is N3,
the control set is [0, 1 − pc], the set of possible duplication probabilities
for any state, pc is the probability of antibiotic concentration-dependent
death. Let A := (X̃n = x, Ỹn = y, Z̃n = z, pn = p, pc), for x > 0, y ≥ 0,
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z ≥ 0

P
(
X̃n+1 = 2j, Ỹn+1 = y + x− j − k, Z̃n+1 = z + k|A

)
=

(
x

j

)
pj
(
x− j
k

)
pkc (1− p− pc)x−j−k

× (1− d(2j, y + x− j − k, z + k)), j = 1, . . . , x, k = 0, . . . , x− j,

P
(
X̃n+1 = 0, Ỹn+1 = y + x− j − k, Z̃n+1 = z + k|A

)
=

(
x

j

)
pj
(
x− j
k

)
pkc (1− p− pc)x−j−k

× d(2j, y + x− j − k, z + k), j = 1, . . . , x, k = 0, . . . , x− j,

P
(
X̃n+1 = 0, Ỹn+1 = y + x, Z̃n+1 = z|A

)
= (1− p− pc)x,

P
(
X̃n+1 = 0, Ỹn+1 = y, Z̃n+1 = z + x|A

)
= pxc ,

(4.2)

while if x = 0

P(X̃n+1 = 0, Ỹn+1 = 0, Z̃n+1 = 0|B) = 1,

where B := (X̃n = 0, Ỹn = y, Ẑn = z, pn = p, pc).
The first two formulae correspond to the possibility that j ≥ 1 bac-

teria duplicate, x − j − k bacteria transform, and k bacteria die (with
probability

(
x
j

)
pj
(
x−j
k

)
pkc (1−p−pc)x−j−k) and the host cell remains alive,

or die, while the third and the fourth formula correspond to the possibil-
ity that all the RBs convert to EBs, and all the RBs die, and in this cases
it does not matter whether the host cell dies or not. The last formula
means that (0, 0, 0) is the unique absorbing state, which is a convenient
condition for the form of the reward function.

The reward function (−1 times the cost function in [10]) gives the
number of EBs upon cell’s death, that is

c(x, y, z) =

{
y, x = 0,

0, otherwise

Define the value function

h(x, y, z) =

{
supπ∈P E

[∑∞
n=0 c(X̃n, Ỹn, Z̃n)|(X̃0, Ỹ0, Z̃0) = (x, y, z)

]
,

y,

(4.3)
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where in (4.3), the first case occurs when d(x, y, z) < 1, and the second
one occurs when d(x, y, z) = 1. The h function in (4.3) is the optimal
number of expected EBs upon host cell’s death, given that the host cell
is alive and (X̃0, Ỹ0, Z̃0) = (x, y, z), if d(x, y, z) < 1. If d(x, y, z) = 1 then
the cell cannot be alive at state (x, y, z), thus the reward is y. Clearly
h(0, y, z) = y. Due to the fact that (0, 0, 0) is the only absorbing state in
the infinite sum in (4.3) there is only one non-zero term.

We are looking for the value h(x, y, z) and an optimal strategy π. This
stochastic optimization problem is also in fact a finite-horizon problem.
Indeed, from any state (X̃n, Ỹn, Z̃n) = (x, y, z) either the total number of

bacteria increases (j ≥ 1 and the host cell survives in (4.2)), or X̃n+1 = 0,
meaning that the cell dies. Therefore, by condition (4.1) from any initial
state (x, y, z) the process reaches the absorbing state (0, 0, 0) in at most
C+1 steps. So in (4.3) in the summation the upper limit can be changed
to C. Using Theorem 3.2.1 in [10] both the value function h and an
optimal strategy can be determined by backward induction on time. In
our setup, backward induction on the total number of bacteria is more
natural, and this goes as follows.

Theorem 4. Assume that (4.1) holds. Then h(x, y, z) = y if x+y+z ≥
C, and h(0, y, z) = y for any y, and for any z. Assume that h(x, y, z) is
determined whenever x+y+ z ≥ m for some m ≤ C, and let x+y+ z =
m− 1. Then

h(x, y, z) = max
p∈[0,1−pc]

x∑
j=0

x−j∑
k=0

(
x

j

)
pj
(
x− j
k

)
pkc (1− p− pc)x−j−k

× [d(2j, y + x− j − k, z + k)(y + x− j − k)

+ (1− d(2j, y + x− j − k, z + k))h(2j, y + x− j − k, z + k)],

(4.4)

where all the values of h on the right-hand side are determined. The
maximum of the continuous function is attained at p(x, y, z), which gives
an optimal strategy.

We note that the proof of Theorem 4 is entirely similar to the proof of
Theorem 2.

4.1.2 Simulation study

For a given death-rate function d, we can determine numerically the
value function and the optimal strategy using Theorem 4. Then, the pro-
cess is a simple Galton–Watson branching process with state-dependent
offspring distribution, which can be simulated easily. Throughout the
numeric calculation, we encountered the issue of sluggish computations.
Hence, it is imperative to opt for a probability death function that can
be efficiently scaled up, see
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d3(x, y, z) =

{
1− e−c0 αx+βy+γz2C , x+ y + z ≤ C − 1,

1, x+ y + z ≥ C.
(4.5)

The procedure is as follows. Using Theorem 4 we compute the optimal
values for C = 64 and C = 128, as they execute relatively swiftly. Subse-
quently, we verify that the values within the p matrices remain unchanged
under scaling. The invariance property was consistently upheld, allowing
us to scale the values up to C = 1024, which represents a roughly signif-
icant threshold, as depicted in equation (4.5). We simulate the process
as follows. Based on the Theorem 4, we calculate the optimal values for
C = 128, with a given choice of p0 and (α, β, γ), with probability death
function (4.5). After scaling up the values, we can proceed to simulate
from the scaled data. It’s worth noting that even for C = 128, the compu-
tations may take up to 5 hours on a typical computer. A straightforward
calculation reveals that p0 <

1
2

must be satisfied when selecting the pa-
rameter, otherwise the process will not be supercritical. Throughout the
simulations, in all cases (α, β, γ) = (2, 2, 1), indicating that RB and EB
are assigned similar effect, which appears to be a sensible choice, see 3.1,
while the dead are assigned a single effect. We conducted simulations for
the cases where p0 ∈ {0, 0.2, 0.4}. Additionally, we plotted the mean for
each simulation, during which we simulated the Xπ process 1000 times.

Figure 4.1 displays four trajectories of the case where p0 = 0, indicat-
ing that the antibiotic has no effect on RB. It is evident that deceased
individuals do not appear. It is observable that the RB bodies are roughly
divided until the seventh generation, after which the conversion to the
EB begins.

In Figure 4.2, we observe the representation of the averages in the case
where p0 = 0. Naturally, deceased individuals do not appear. Around
the seventh generation, EBs begin to emerge.

Figure 4.3 depicts four trajectories of the Xπ process, with paramter
p0 = 0.2, indicating that the antibiotic has a relatively minor impact
on the RB body. It is apparent that deceased individuals are already
appearing.

In Figure 4.4, the mean are depicted. Interestingly, despite the rel-
atively small value of p0, the average of the 1000 simulations results in
approximately the same number of deceased or EB individuals. So even
though the antibiotic doesn’t have as much of an effect, we still see about
the same number of EBs and dead individuals at the end of the process,
which is surprising.

The simulations in Figure 4.5 depict the scenario where the value of
p0 = 0.4 is already close to the critical value of 0.5. It can be seen that
at the end of each trajectory, there are more dead individuals than EB.

As observed in Figure 4.6, it’s apparent from the averages that the
process struggles to maintain RB and EB. At the end of the process, the
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Figure 4.1: Simulations of the process with death-probability function
(4.5), with parameters p0 = 0, (α, β, γ) = (2, 2, 1), and C = 1024.

Figure 4.2: The mean of EBs, RBs, and dead with death-probability
function (4.5), with parameters p0 = 0, (α, β, γ) = (2, 2, 1), and C =
1024.
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Figure 4.3: Simulations of the process with death-probability function
(4.5), with parameters p0 = 0.2, (α, β, γ) = (2, 2, 1), and C = 1024.

Figure 4.4: The mean of EBs, RBs, and dead with death-probability
function (4.5), with parameters p0 = 0.2, (α, β, γ) = (2, 2, 1), and C =
1024.
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Figure 4.5: Simulations of the process with death-probability function
(4.5), with parameters p0 = 0.4, (α, β, γ) = (2, 2, 1), and C = 1024.

average number of dead individuals will be much higher than the number
of EB.
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Figure 4.6: The mean of EBs, RBs, and dead with death-probability
function (4.5), with parameters p0 = 0.4, (α, β, γ) = (2, 2, 1), and C =
1024.

4.2 The theoretical model (antibiotic has

effect on both types)

In this Section, we presume that the antibiotic also exerts an influence on
the RB body, and EB body as well. This approach is considerably more
intricate, and unfortunately, we cannot furnish simulation results in this
context due to the extensive computation time required. The main issue
that emerged was that, until now, it was assumed that h(0, y, z) = y.
However, we cannot assert that in this case, as the process does not
unequivocally halt in the (0, y, z) state, as it has done thus far, since the
antibiotic now has the same effect on the EB. Hence, we introduced an
finite N value, which aligns with the rationale outlined in Chapter 2. It
specifies the time at which the process will end. Note that N was about
10 in the antibiotic experiment, see in Chapter 2.

Again consider a three-type discrete-time Galton–Watson branching
process Xπ = (Xπ

n)n = (Xπ
n , Y

π
n , Z

π
n ), n ≥ 0, together with a sequence

of probabilities π = (pn)n. We assume that π is adapted to the natural
filtration (Fn)n generated by Xπ, i.e. Fn = σ(Xπ

k , k ≤ n). Initially
Xπ

0 = (1, 0, 0), and the process evolves as
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Xπ
n+1 =

Xπ
n∑

i=1

ξn,i,

Y π
n+1 =

Xπ
n∑

i=1

ηn,i +

Y πn∑
i=1

(1− ζ ′n,i),

Zπ
n+1 = Zπ

n +

Xπ
n∑

i=1

ζn,i +

Y πn∑
i=1

ζ ′n,i, n ≥ 0,

where (ξn, ηn, ζn, ζ
′
n), (ξn,i, ηn,i, ζn,i, ζ

′
n,i) n = 1, 2, . . ., i = 1, 2, . . . are con-

ditionally independent random variables given (pn)n, for fix n the vari-
ables are identically distributed, such that

P ((ξn, ηn, ζn) = (2, 0, 0)|pn) = pn,

P ((ξn, ηn, ζn) = (0, 1, 0)|pn) = 1− pn − pc,
P ((ξn, ηn, ζn) = (0, 0, 1)|pn) = pc,

and P(ζ ′n = 0) = 1− qc, P(ζ ′n = 1) = qc. X
π
n and Y π

n again stands for the
number of RBs and number of EBs in generation n, while Zπ

n denotes the
number of dead in generation n. In generation n each RB duplicates with
probability pn, or die, with a predetermined probability pc, or convert into
EB with probability 1 − pn − pc. In generation n each EB dies with a
determined probability qc. It’s worth mentioning that pc, and qc remain
independent of the current generation, and it represents the probability
of bacterial demise, contingent upon the antibiotic concentration, and
we assume that qc � pc. If (ξn,i, ηn,i, ζn,i = (2, 0, 0), then the ith RB
in generation n duplicates, if (ξn,i, ηn,i, ζn,i = (0, 1, 0) then the ith RB
converts to EB in generation n, while if (ξn,i, ηn,i, ζn,i = (0, 0, 1) then
the ith RB died in generation n. If ζ ′n,i = 1, then the ith EB died in
generation n, while ζ ′n,i = 0, the ith EB does not die in the generation n.
Similarly, we call π the strategy, the sequence of duplication probabilities
is adapted to (Fn)n.

For the conditional expectations we obtain

E[(Xπ
n+1, Y

π
n+1, Z

π
n+1)|Fn] = Xπ

n

2pn 1− pn − pc pc
0 1− qc qc
0 0 1

 .

The process concludes at a predetermined time N , and our objective is to
optimize E(YN). It’s important to note that this optimization problem
differs from the one in Chapter 3 or Section 4.1. In those cases, the
process halted at a random time T , whereas here, we are aware that we
will terminate the process at a predetermined time N . Certainly, we
require the variable T in the same manner.
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4.2.1 Death time T depends on X, and the antibi-
otic has effect on both types (RB and EB)

Here we assume that T , the host cell death time depends on the process
Xπ, and the antibiotic has effect on both type. Furthermore, we assume
that the process ends at a predetermined time N . It is important to note
that there is no correlation between the times N and T . Given that the
host cell is alive in generation n− 1 < N , the probability that it dies in
the next step is d(Xπ

n , Y
π
n , Z

π
n ), that is

P(T = n|T > n− 1,Fn) = d(Xπ
n , Y

π
n , Z

π
n ).

The deterministic death-probability function d describes the effect of RBs,
EBs, and dead to cell’s death. Assume that

∃ C > 0 such that d(x, y, z) = 1 whenever x+ y + z ≥ C. (4.6)

We assume that the cells are in vitro, and the process stops after fix N
generation time. We must redefine our process once more, taking into
account the scenario where if the host cell perishes before time N , the
(Yn, Zn) process will still persist,

X̃n = XnI(T > n), Ỹn = Yn, Z̃n = Zn.

We need to adapt our process in the following manner: if the host cell
perishes before reaching time N , then the RB bodies are reset to zero,
as they cannot transform into EB bodies outside the host cell, rendering
their count irrelevant. However, EB bodies continue to be influenced by
the antibiotic in the same manner until time N . Due to these consid-
erations, we must now factor in the number of generations during the
optimization calculation. Then the state space is N4, the control set is
[0, 1− pc], the set of possible duplication probabilities for any state, and
the transition probabilities are, for x ≥ 0, y ≥ 0, z ≥ 0, n ≤ N − 1 and
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let A := (X̃n = x, Ỹn = y, Z̃n = z, pn = p, pc, qc)

P
(
X̃n+1 = 2j, Ỹn+1 = y − `+ x− j − k, Z̃n+1 = z + k + `|A

)
=

(
x

j

)
pj
(
x− j
k

)
pkc (1− p− pc)x−j−k

(
y

`

)
q`c(1− qc)y−`

× (1− d(2j, y − `+ x− j − k, z + k + `)),

j = 1, . . . , x, k = 0, . . . , x− j, ` = 0, . . . , y.

P
(
X̃n+1 = 0, Ỹn+1 = y − `+ x− j − k, Z̃n+1 = z + k + `|A

)
=

(
x

j

)
pj
(
x− j
k

)
pkc (1− p− pc)x−j−k

(
y

`

)
q`c(1− qc)y−`

× (d(2j, y − `+ x− j − k, z + k + `)),

j = 1, . . . , x, k = 0, . . . , x− j, ` = 0, . . . , y.

P
(
X̃n+1 = 0, Ỹn+1 = y + x− `, Z̃n+1 = z + `|A

)
= (1− p− pc)x

(
y

`

)
q`c(1− qc)y−`, ` = 0, . . . , y.

P
(
X̃n+1 = 0, Ỹn+1 = y − `, Z̃n+1 = z + x+ `|A

)
= pxc

(
y

`

)
q`c(1− qc)y−`, ` = 0, . . . , y,

(4.7)

while if x = 0

P(X̃n+1 = 0, Ỹn+1 = y − `, Z̃n+1 = z + `|A)

=

(
y

`

)
q`c(1− qc)y−`, ` = 0, . . . , y.

The first two formulae correspond to the possibility that j ≥ 1 RBs
duplicate, k RBs bacteria die, x − j − k RBs transform to EBs (with
probability

(
x
j

)
pj
(
x−j
k

)
pkc (1−p−pc)x−j−k), and ` EBs die, y−` EBs persist

(with probability
(
y
`

)
q`c(1− qc)y−`) and the host cell remains alive, or die.

While the third and the fourth formula correspond to the possibility that
all the RBs convert to EBs, and all the RBs die, and in this cases it does
not matter whether the host cell dies or not (` EBs die, y− ` EB persist
in both cases). The final formula indicates that if x = 0, contrary to

previous cases, the processes Ỹn and Z̃n will not reset but will continue
until n = N .
Thus we have that, the reward function

c(x, y, z;n) =

{
y, n = N,

0, otherwise.
(4.8)

This assumption is entirely reasonable, as there is a reward only if n = N .
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Define the value function

h(x, y, z;n) = sup
π∈P

E
[
c(X̃N , ỸN , Z̃N ;N)|(X̃0, Ỹ0, Z̃0) = (x, y, z)

]
. (4.9)

We are looking for the value h(x, y, z;n) and an optimal strategy
π. This stochastic optimization problem is also in fact a finite-horizon
problem. Indeed, from any state (X̃n, Ỹn, Z̃n) = (x, y, z) either the total
number of bacteria increases (j ≥ 1 and the host cell survives in (4.2)),

or X̃n+1 = 0, meaning that the host cell dies. It is evident that the
process terminates within a finite time, as it will inevitably cease for a
fixed N . It’s worth mentioning that this value was approximately 10
in the bacterial experiment, as shown in Chapter 2. Another crucial
observation is that the process does not halt in the state (0, y, z;n) if
n < N . In Theorem 5, we can determine the h value of a state using the
same backward step recursive method, as in Theorem 2, in Theorem 3,
and in Theorem 4.

Theorem 5. Assume that (4.6) holds, and N is given. Then for any n ≤
N , h(x, y, z;n) = y(1− q)N−n, if x+ y+ z ≥ C, and h(0, y, z;n) = y(1−
q)N−n for any y, and for any z. Assume that h(x, y, z;n) is determined
whenever x+ y+ z+n ≥ m for some m ≤ C−n, and let x+ y+ z+n =
m− 1. Then for all n ≤ N − 1

h(x, y, z;n) = max
p∈[0,1−pc]

x∑
j=0

x−j∑
k=0

y∑
`=0

(
x

j

)(
x− j
k

)(
y

`

)
× pjpkc (1− p− pc)x−j−kq`c(1− qc)y−`

× [d(2j, y − `+ x− j − k, z + k + `)(y − `+ x− j − k)(1− qc)N−(n+1)

+ (1− d(2j, y − `+ x− j − k, z + k + `))

× (h(2j, y − `+ x− j − k, z + k + `;n+ 1)(I(n+ 1 < N)

+ (y − `+ x− j − k)I(n+ 1 = N)))],

(4.10)

where all the values of h on the right-hand side are determined. The
maximum of the continuous function is attained at p(x, y, z), which gives
an optimal strategy.



5

Summary

The thesis presents the stochastic modeling of the Chlamydia bacterial
species.

In Chapter 2, we present a Galton–Watson model describing the
growth of a bacterial population in the presence of antibiotic concen-
tration. Our stochastic model is much more natural compared to pre-
vious deterministic models, see Liu et al. [16]. We assumed that the
expected value of offspring is given by the formula m(c) = 2/(1 + αcβ),
where c is the antibiotic concentration, and α > 0, β > 0 are unknown
parameters. Considering measurement error in the qPCR technique, we
obtained weakly consistent and asymptotically normal estimates for the
unknown parameters (α, β) at different antibiotic concentrations.

The minimal inhibitory concentration (MIC) is the lowest concen-
tration of an antibiotic that inhibits the growth of bacteria, which is a
crucial parameter in pharmacology. Estimating the MIC is quite chal-
lenging because with the standard double dilution technique, only bacte-
rial growth can be observed at certain antibiotic concentrations, such as
c0, 2c0, . . . , 2

kc0. Therefore, we can only claim that the MIC falls within
some interval [c, 2c], or we can provide an upper bound. The majority of
the literature does not offer a proper mathematical model for bacterial
population growth; it merely defines the MIC as the smallest antibiotic
concentration at which no visible bacterial growth occurs. In our work,
we provide an explicit mathematical definition of the MIC and a estima-
tion procedure.

From the simulation data, we can observe that the estimates per-
form well even when the number of simulations varies at different con-
centrations, set to 3, which is the recommended measurement count in
microbiology (see Yuan et al. [25] and Eszik et al. [7]).

We applied the model to real measurement data, where the growth
of Chlamydia trachomatis bacteria was examined under two different
antibiotics. Although our mathematical model has only two parameters,
we found an exceptionally good fit to the real data for both bactericidal
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and bacteriostatic antibiotics.
In Section 2.6, we retained the model assumption from Chapter 2, but

we estimated the probability of extinction using a different measurement
procedure. During colony counting, if x0 individuals (e.g., Escherichia
coli) are inoculated onto an agar plate containing antibiotics, at the end
of the incubation period, all viable colonies are counted. We assumed
that the distribution of offspring is given by the formula p2(c) = m(c)

2
.

Similarly, we obtained weakly consistent and asymptotically normal
estimates for the parameters (α, β) as well as for the MIC.

In Chapter 3, we present a new Galton–Watson branching model to
model the evolution of Chlamydia populations. In this model, determin-
ing the state-dependent offspring distribution is achieved through solving
a stochastic optimization problem. The only input information we have
about the process is the death-probability function d, which gives the
probability of a host cell dying in a given state.

By choosing a natural death function, simulation results show that
the process is capable of capturing the asynchronous behavior of bacterial
cells, which has recently been supported by experiments in [15]. Further-
more, our simulated data fits extremely well with real measured data, as
reported in [15], shown in Table 3.1. To the best of our knowledge, this
is the first mathematical model that reproduces this phenomenon.

The exact cause of host cell death is not well understood. Experi-
ments suggest that Chlamydia regulates the survival of host cells because
early cell death would be disadvantageous for the bacterial population,
as seen in [4, p. 394]. However, the quantity of bacteria within the host
cell has a pronounced effect. It is not clear which form of the bacterium
is more harmful to the host cell, as RBs are physically larger, while EBs
release chemical substances. By altering the relative impact of RBs and
EBs, our simulation studies indicate that both RBs and EBs have an
equal effect on host cell death.

In Chapter 4, we integrated our previous findings. We examined the
optimal spread of Chlamydia in the presence of antibiotics. It is worth
noting that, to the best of our knowledge, there are no real measurement
data available, but this assumption is biologically plausible. We assumed
that the distribution of offspring follows a Galton–Watson process. In the
simplest case, we simplified our model by assuming that the antibiotic
affects only the RB form, as shown in Subsection 4.1. This is a biolog-
ically reasonable assumption because the infectious EB form is capable
of forming inclusions, thus better enduring unfavorable conditions. By
choosing a scalable death function, we can simulate the process, where a
new parameter pc represents the antibiotic effect, which remains constant
throughout the process. In Subsection 4.2, we assumed that the antibi-
otic affects both types of Chlamydia, introducing another parameter qc,
representing the probability of EB form death. We assumed qc � pc. It
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is noteworthy that unlike the models found in Chapter 3 and Subsection
4.1, the process will not stop when the number of RB bodies becomes
zero. To address this issue, we introduced a deterministic value N , repre-
senting the end of the process in this generation. This value was around
10 based on real measured data, as seen in Chapter 2.

The thesis is based on three articles of the author. These publications
are the following:

[1] A. Bogdanov, P. Kevei, M. Szalai, D. Virok: Stochastic modeling
of in vitro bactericidal potency. Bulletin of Mathematical Biology
84 (6), 2022.

[2] M. Szalai, P. Kevei: Estimation of in vitro bactericidal potency
based on colony counting method. 22nd EYSM 2021 Conference
Proceedings.

[3] P. Kevei, M. Szalai: Branching model with state dependent off-
spring distribution for Chlamydia spread.

Other publications from the author are as follows:

(i) Máder Attila, Szalai Máté: A kétoldali közeĺıtés, leszámlálás mód-
szere, Polygon 27 No. 1 (2024), 8-39.

(ii) Szalai Máté: Szimulációk használata a sztochasztika oktatásában,
2024.
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Összefoglaló

A disszertáció a Chlamydia baktériumfaj sztochasztikus modellezését
mutatja be.

A 2. fejezetben megadunk egy Galton–Watson modellt, mely egy
baktériumpopuláció növekedését ı́rja le, az antibiotikum koncentráció je-
lenlétében. A sztochasztikus modellünk sokkal természetesebb a korábbi
determinisztikus modellekhez képest, ld. Liu és munkatársai cikkében
[16]. Feltettük, hogy az utódok várható értékét az m(c) = 2/(1+αcβ) for-
mula adja meg, ahol c az antibiotikum koncentráció, valamint α > 0, β >
0 ismeretlen paraméterek. A qPCR technikában figyelembe véve a mérési
hibát, különböző antibiotikum koncentráció esetén gyengén konzisztens,
valamint aszimptotikusan normális becsléseket kaptunk az ismeretlen
(α, β) paraméterekre.

A minimális gátló koncentráció (MIC=minimal inhibitory concen-
tration), a legkisebb antibiotikum koncentráció, amely megakadályozza
a baktériumok növekedését, mely egy nagyon fontos paraméter a far-
makológiában. A MIC-nek a becslése meglehetősen nehézkes, mivel a
szokásos kettős h́ıǵıtási technika miatt c0, 2c0, . . . , 2

kc0, csak a baktériu-
mok növekedése figyelhető meg adott antibiotikum-koncentráció mellett.
Emiatt csak azt álĺıthatjuk, hogy a MIC valamilyen [c, 2c] intervallumba
esik, vagy egy felső korlátot tudunk rá adni. A szakirodalmak túlnyomó
többsége nem nyújt megfelelő matematikai modellt a baktériumpopuláció
növekedésére, csak a MIC értéket határozza meg, mint a legkisebb antibi-
otikum koncentrációt, látható baktériumnövekedés nélkül. Munkánkban
megadjuk a MIC explicit matematikai defińıcióját, illetve egy becslési
eljárását is bemutatjuk.

A szimulációs adatokból láthatjuk, hogy a becslések jól működnek,
még akkor is, ha a szimulációk száma különböző koncentrációkban 3, ami
a javasolt mérési szám a mikrobiológiában (lásd pl. Yuan és munkatársai
[25], illetve Eszik és munkatársai [7] cikkekben).

A modellt valós mérési adatokra alkalmaztuk, ahol a Chlamydia tra-
chomatis baktérium növekedését vizsgálták, két különböző antibiotikum
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mellett. Noha a matematikai modellünknek csak két paramétere van,
mégis rendḱıvül jó illeszkedést találtunk a valós adatokhoz, mind a bak-
tericid, mind a bakteriosztatikus antibiotikum esetében.

A 2.6. alfejezetben a 2. fejezetben lévő modellfeltevésünket meghagy-
tuk, azonban más mérési eljárást feltételezve a kihalási valósźınűséget
tudtuk becsülni. A kolóniaszámlálás során, hogyha x0 számú egyedet
(pl. Escherichia coli) oltanak rá egy sor antibiotikumot tartalmazó agar-
lemezre, akkor az inkubációs időszak végén az összes életképes telepet
megszámolják. Feltettük, hogy az utódok eloszlását a p2(c) = m(c)

2
for-

mula adja meg.
Hasonlóan gyengén konzisztens, valamint aszimptotikusan normális

becsléseket kaptunk az (α, β) paraméterekre, valamint a MIC-re.
A 3. fejezetben a Chlamydia populációk evolúciójának modellezésére

egy új Galton–Watson elágazó modellt adunk meg. Ebben a modellben
az állapotfüggő utódeloszlás meghatározása sztochasztikus optimalizációs
probléma megoldásával történik. A folyamatról az egyetlen bemeneti in-
formációnk a d halálozási függvény, mely megadja annak a valósźınűségét,
hogy a gazdasejt adott állapotban meghal.

Természetes halálozási függvényt választva, a szimulációs eredmé-
nyek azt mutatják, hogy a folyamat képes megfogni a baktériumsejtek
aszinkron viselkedést, amit nem régen ḱısérletekkel is alátámasztottak a
[15]-ben. Továbbá, a szimulált adataink rendḱıvül jól illeszkednek a valós
mért adatokhoz, amit a [15]-ben is ı́rnak, ez látható a 3.1. táblázatban.
Legjobb tudomásunk szerint ez az első olyan matematikai modell, amely
reprodukálja ezt a jelenséget.

A gazdasejt halálának pontos oka még nem jól ismert. A ḱısérletek azt
sugallják, hogy a Chlamydia szabályozza a gazdasejtek túlélését, mivel a
korai elhalás hátrányos lenne a baktériumpopulációra vonatkozóan lásd
[4, 394.o.]. A gazdasejtben lévő baktériumok mennyisége azonban ha-
tározottan erős hatással rendelkezik. Nem világos, hogy a baktérium
melyik formája károsabb a gazdasejtre, mivel az RB-k fizikailag nagy-
obbak, mı́g Az EB-k vegyi anyagokat választanak ki. Az RB-k és EB-k
relat́ıv hatásának változtatva, a szimulációs vizsgálataink szerint az RB-k
és az EB-k ugyanolyan hatással vannak a gazdasejt halálára.

A 4. fejezetben a korábbi eredményeinket kapcsoltuk össze. Megvizs-
gáltuk a Chlamydia optimális terjedését abban az esetben, hogyha jelen
van az antibiotikum. Megjegyzendő, hogy a legjobb ismereteink sze-
rint valós mérési adatok nincsenek, azonban biológiailag egy természetes
feltevés. Feltettük, hogy az utódok eloszlása Galton–Watson folyamat
szerint alakul. Legelső esetben a modellünket annyiban egyszerűśıtettük,
hogy az antibiotikum csupán az RB alakra fejti ki hatását, ez látható
a 4.1. alfejezetben. Ez biológiailag egy indokolható feltevés, hiszen a
fertőző EB forma képes zárványokat létrehozni, ezáltal jobban elviselni
a kellemetlen körülményeket. Skálázható halálozási függvényt választva
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tudjuk szimulálni a folyamatot, ahol egy új paraméter a p0, mely megadja
az antibiotikum hatását, ami egy konstans érték a folyamat alatt.

A 4.2. alfejezetben feltettük, hogy az antibiotikum mindkét Chlamy-
dia t́ıpusra hatással van, bevezetve egy újabb qc paramétert, mely megadja
az EB forma halálának valósźınűségét. Feltettük, hogy qc � pc. Meg-
jegyzendő, hogy a 3. fejezetben található modell, valamint a 4.1. alfe-
jezetben fellelhető modellekkel ellentétben a folyamat nem fog megállni
akkor, amikor az RB testek száma nulla lesz. A probléma áthidalása
végett bevezettünk egy N determinisztikus értéket, mely a folyamat
végét jelenti ebben a generációban. Ez az érték a valós mért adatoknál
olyan 10 körül volt, ez látható a 2. fejezetben.

A disszertáció a szerző három munkáján alapul, ezek a következők:

[1] A. Bogdanov, P. Kevei, M. Szalai, D. Virok: Stochastic modeling
of in vitro bactericidal potency. Bulletin of Mathematical Biology
84 (6), 2022.

[2] M. Szalai, P. Kevei: Estimation of in vitro bactericidal potency
based on colony counting method. 22nd EYSM 2021 Conference
Proceedings.

[3] P. Kevei, M. Szalai: Branching model with state dependent off-
spring distribution for Chlamydia spread.

A szerző további munkái:

(i) Máder Attila, Szalai Máté: A kétoldali közeĺıtés, leszámlálás mód-
szere, Polygon 27 No. 1 (2024), 8-39.

(ii) Szalai Máté: Szimulációk használata a sztochasztika oktatásában,
2024.
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